
AppSec New Zealand 2021

Federated Logins 
with OAuth 2.0 & 
OpenID Connect



Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen



Also, thank you!



#whoami

• Matt Cotterell/TC
• ZX Security – Security 

Consultant
• Auth stuff, Cloud stuff, 

.NET stuff
• Ridiculous stock photos 

are my jam



Traditionally, login forms looked like this:



Local Authentication

• Password between user and service
• Never given to any other service

• User’s stuff was on the same service
• Other services couldn’t access this stuff



Passwords kind of suck…

• Storing them safely is hard
• Service has to hash it, salt it, iterate it, etc
• Users have to use a password manager (or likely, just reuse it)

• Can’t give this to some other service to use
• Grants “unlimited access” to account
• Resetting password breaks access for all services



Fast forward to 2021…

• Data breaches keep leaking our passwords
• Too many passwords, we want less things to remember
• We want services to work together
• We want to control our data

• Share some things, not everything
• Revoke this later



Introducing: OpenID Connect, OAuth 2.0 and 
JWT

OpenID Connect
Authentication

• Log in with an external 
provider

• Tells services who you are
• Choose to share additional 

information about you
• An “extension” of OAuth 

2.0

OAuth 2.0
Authorization

• Lets services access some 
of your data

• Works in conjunction with 
OpenID Connect

JWT
Token Format

• Given to the service
• Used to “prove” your 

identity
• (Often) used as a 

“temporary token” to 
access your resources



🔒 https://www.photoviewerplus.co.nz

New user? Sign in below:

Photo Viewer Plus!
Edit your Google Photos on our cool, modern website!



🔒 https://account.google.com



🔒 https://account.google.com

user@gmail.co
m

View, modify and delete 
your photos



🔒 https://www.photoviewerplus.co.nz

Photo Viewer Plus! Logged in as: user@gmail.com

Please wait, retrieving your 
photos from Google…



🔒 https://www.photoviewerplus.co.nz

Photo Viewer Plus! Logged in as: user@gmail.com



What just happened?

account.google.com

api.google.comphotoviewerplus.co.nz

G0og1ePas
s!

Identity Token

Access Token



Identity Token

Tells photoviewerplus.co.nz 
who Matt Cotterell is:
• Some info about them
• How they logged on
• Groups they belong to

Access Token

Lets photoviewerplus.co.nz
briefly access Matt Cotterell’s
data 
on api.photos.google.com:

• Photos (Read + Write)
• Favourites List (Read Only)



There’s three servers now?



Let’s break it down:

Resource
“Stuff”



Terminology Resource
“Stuff”



Let’s break it down:

Resource Owner
“User”

Resource
“Stuff”



Terminology Resource Owner
“User”



Let’s break it down:

Resource Owner
“User”

Client
“App” / “Server”

Resource
“Stuff”



Terminology Client
“App” / “Server”



Terminology Client
“App” / “Server”



Terminology Client
“App” / “Server”



Terminology

“The thing with 
the ‘log in’ button.”



Let’s break it down:

Resource Owner
“User”

Client
“App” / “Server”

Resource
“Stuff”

Identity Provider
“Authorisation Server”



Terminology Authorization Server
“Identity Provider”



“The place where 
you prove who you 
are”

Terminology



Let’s break it down:

Resource Owner
“User”

Client
“App” / “Server”

Resource
“Stuff”

Resource Server
“API Server”

Identity Provider
“Authorisation Server”



Terminology

api.photos.google.com

Resource Server
“API Server”



Terminology

“Where the stuff is 
that the Client wants.”



Tokens?



Two (general) ways tokens can work…

“Reference” Tokens
• Usually just a random 

string
• Often references 

some other data (like 
in a database)

• Database: 
“xXBw2AAAABlBMVEX is a 
session ID for User 
159”

“Self-contained” Tokens
• Has data inside it
• Uses cryptography to 

make sure it’s not fake 
or altered

• Can be verified 
“offline”

• Examples: JWT, 
PASETO, SAML 
Assertions…



JWT

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMj
M0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxN
TE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6
yJV_adQssw5c



JWT

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMj
M0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxN
TE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6
yJV_adQssw5c



JWT

eyJhbGciOiJIUzI1NiIsInR5c
CI6IkpXVCJ9

eyJzdWIiOiIxMjM0NTY3O
DkwIiwibmFtZSI6IkpvaG4g
RG9lIiwiaWF0IjoxNTE2MjM
5MDIyfQ

SflKxwRJSMeKKF2QT4fwp
MeJf36POk6yJV_adQssw5
c

{
"alg": "HS256",
"typ": "JWT"

}

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

HMAC256(header + payload, secret)



How does it work?



OAuth 2.0 Flows – Authorisation Code

• Most common flow you’ll see in web applications
• Two steps:

1. Resource Owner logs in to Identity Provider using 
browser, gets code

2. Client exchanges code with Identity Provider for 
access/id tokens



account.google.com

api.google.comphotoviewerplus.co.nz

G0og1ePas
s!

ℹ This is called the 
“Authorization Code”. The 
client uses this later to get the 
tokens.

OAuth 2.0 Flows – Authorisation Code (Step 1)



OAuth 2.0 Flows – Authorisation Code (Step 1)

https://account.google.com/authorise

?response_type=code

&client_id=1234567890-abc123def456

&redirect_uri=https://photoviewerplus.co.nz/callback

&scope=photo.read+premium.promote_photo

&state=xcoiv98y2kd22vusuye3kch

response_type=code: Use the Authorization 
Code flow

client_id: Public identifier for this client
(photoviewerplus.co.nz)

redirect_uri: Go back here when user is 
finished logging in

scope: Limits what the client is allowed to 
access (“photo.read” and 
“premium.promote_photo”)
state: Similar to a “CSRF” token. The client 
picks a non-guessable value. The 
Authorization Server has to send the same 
value back.



OAuth 2.0 Flows – Authorisation Code (Step 1)

HTTP/1.1 200 OK

Location: https://photoviewerplus.co.nz/callback

?code=g0ZGZmNjVmOWIjNTk2NTk4ZTYyZGI3

&state=xcoiv98y2kd22vusuye3kch

ℹ The resource owner gives 
this to the client. The client
exchanges it for the access/id 
token!



OAuth 2.0 Flows – Authorisation Code (Step 1)

https://account.google.com/authorise

?response_type=code

&client_id=1234567890-abc123def456

&redirect_uri=https://photoviewerplus.co.nz/callback

&scope=photo.read+premium.promote_photo

&state=xcoiv98y2kd22vusuye3kch

response_type=code: Use the Authorization 
Code flow

client_id: Public identifier for this client
(photoviewerplus.co.nz)

redirect_uri: Go back here when user is 
finished logging in

scope: Limits what the client is allowed to 
access (“photo.read” and 
“premium.promote_photo”)
state: Similar to a “CSRF” token. The client
picks a non-guessable value. The Identity 
Provider has to send the same value back.



Important note about Redirect URLs!

https://account.google.com/authorise

?response_type=code

&client_id=1234567890-abc123def456

&redirect_uri=https://evilbadsite.com/hack

&scope=photo.read+premium.promote_photo

&state=xcoiv98y2kd22vusuye3kch



Important note about Redirect URLs!
🔒

https://account.google.com/authorize?client_id=12345678
90[…]

user@gmail.co
m

View, modify and delete 
your photos

photoviewerplus.co.
nz

⚠ Remember, Client 
ID is public, anyone can 
find it!



Important note about Redirect URLs!
🔒
https://evilbadsite.com/hack?code=for_the_clients_eyes_onl
y[…]

❌ Now somebody 
other than the client got 
the authorisation code!

❌ The resource owner
got redirected to a bad 
site! Now they might 
get phished…



Important note about Redirect URLs!

• Extremely important this only goes to expected URLs!
• Add redirect URLs to a safelist
• Client ID should ONLY allow return to certain URLs!



OAuth 2.0 Flows – Authorisation Code (Step 1)

https://account.google.com/authorise

?response_type=code

&client_id=1234567890-abc123def456

&redirect_uri=https://photoviewerplus.co.nz/callback

&scope=photo.read+premium.promote_photo

&state=xcoiv98y2kd22vusuye3kch

response_type=code: Use the Authorization 
Code flow

client_id: Public identifier for this client
(photoviewerplus.co.nz)

redirect_uri: Go back here when user is 
finished logging in

scope: Limits what the client is allowed to 
access (“photo.read” and 
“premium.promote_photo”)
state: Similar to a “CSRF” token. The client
picks a non-guessable value. The Identity 
Provider has to send the same value back.



OAuth 2.0 Scopes

photo.readphoto.write

api.google.com

admin.server.shutdown

premium.promote_photo

User Permissions

Access Token “Scopes”



OAuth 2.0 Scopes

• Scopes limit what the access token can do
• Client can’t do more than the resource owner can do
• Resource Owner can limit what the client can do

• Scopes can also limit things in the identity token
• Resource Owner decides what personal details the 

client gets



OAuth 2.0 Flows – Authorisation Code (Step 1)

https://account.google.com/authorise

?response_type=code

&client_id=1234567890-abc123def456

&redirect_uri=https://photoviewerplus.co.nz/callback

&scope=photo.read+premium.promote_photo

&state=xcoiv98y2kd22vusuye3kch

response_type=code: Use the Authorization 
Code flow

client_id: Public identifier for this client
(photoviewerplus.co.nz)

redirect_uri: Go back here when user is 
finished logging in

scope: Limits what the client is allowed to 
access (“photo.read” and 
“premium.promote_photo”)
state: Similar to a “CSRF” token. The client
picks a non-guessable value. The Identity 
Provider has to send the same value back.



The “state” parameter

Think of it like a CSRF token…
1. Client decides on any (non-guessable) value
2. Identity Provider simply returns it with the authorisation code
3. Client checks:

• Is this a “state” value I created?
• Is this the same browser I gave it to? (check cookies, etc)



The “state” parameter

Without it:
• Victim clicks link with attackers 

own authorisation code
• Victim is logged into attackers 

account
• Victim enters personal 

information into attackers 
account

Search for “Session Fixation Attack” for more 
information!



account.google.com

api.google.comphotoviewerplus.co.nz

OAuth 2.0 Flows – Authorisation Code (Step 2)



OAuth 2.0 Flows – Authorisation Code (Step 2)

POST /token HTTP/1.1

Host: account.google.com

grant_type=authorization_code

&code=g0ZGZmNjVmOWIjNTk2NTk4ZTYyZGI3

&redirect_uri=https://photoviewerplus.co.nz/callback

&client_id=1234567890-abc123def456

&client_secret=qWgdYAmab0YSkuL1qKv5bPX

response_type=authorization_code: 
Redeem an authorization code for access/id 
tokens

client_id: Public identifier for this client
(photoviewerplus.co.nz)

redirect_uri: Where the resource owner was 
sent to when they finished logging in

client_secret: “Password” that only the 
client knows

code: The Authorization code we got from 
the previous step



OAuth 2.0 Flows – Authorisation Code (Step 2)

HTTP/1.1 200 OK

Content-Type: application/json

{

"access_token":“eyJ0NjJkZmQ5OTM2[…]NDE1ZTZjNGZmZjI3",

"token_type":"bearer",

"expires_in":3600,

"refresh_token":“eYJGYzYTlmM2YxO[…]TQ5MGE3YmNmMDFkNTVk",

"scope":“photo.read“,

"id_token": "eyJzcifQewoNz[…]AKfQggW8hMzqg"

}

ℹ Access tokens don’t last 
very long! The client can use 
this “Refresh Token” to get a 
fresh one without bothering 
the user.



What about things that aren’t websites?



Lots of different scenarios available

• What if there is no user? (service-to-service)
• What if the user doesn’t have a keyboard? (IoT, Smart 

TV, etc)



Client wants to access Resource 
Server
No Resource Owner Involved
“Server to Server”

Resource Owner wants to give 
Client access to Resource Server
Mobile Apps, Web, Desktop 
Clients

Resource Owner can’t easily auth 
with a web view
IoT, Smart TVs, CLI…

OAuth 2.0 Flows

Device Code

Client Credentials

Authorisation Code Implicit Flow

Resource Owner Password 
Credential



account.google.com

api.google.comphotoviewerplus.co.nz

OAuth 2.0 Flows – Client Credentials



OAuth 2.0 Flows – Client Credentials
POST /token HTTP/1.1

Host: accounts.google.com

Content-Type: application/x-www-form-
urlencoded

grant_type=client_credentials

&client_id=1234567890-abc123def456

&client_secret=qWgdYAmab0YSkuL1qKv5bPX

&scope=billing+licenses

response_type=client_credentials: Use 
the Client Credentials flow

client_id: Public identifier for this client
(photoviewerplus.co.nz)

client_secret: “Password” that only the 
client knows

scope: Limits what the client can do 
with the token it gets (“billing” and 
“licenses”)

ℹ This is very similar to “Step 
2” before! The difference is 
there is no Authorization 
Code, because there is no 
user.



OAuth 2.0 Flows – Client Credentials

HTTP/1.1 200 OK

Content-Type: application/json

{

"access_token":“eyJ0NjJkZmQ5OTM2[…]NDE1ZTZjNGZmZjI3",

"token_type":"bearer",

"expires_in":3600,

"scope":“billing“

}



Lots of different scenarios available

• What if there is no user? (service-to-service)
• What if the user doesn’t have a keyboard? (IoT, Smart 

TV, etc)



Client wants to access Resource 
Server
No Resource Owner Involved
“Server to Server”

Resource Owner wants to give 
Client access to Resource Server
Mobile Apps, Web, Desktop 
Clients

Resource Owner can’t easily auth 
with a web view
IoT, Smart TVs, CLI…

OAuth 2.0 Flows

Device Code

Client Credentials

Authorisation Code Implicit Flow

Resource Owner Password 
Credential



OAuth 2.0 Flows – Device Code

Scan 
this:

Use this code 
when asked:

ABCD123
4



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

I need to log in a new Resource Owner

Send the user to 
https://account.google.com/device

They need to use "BDWD-HQPK“ as their code



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

Is BDWD-HQPK done yet?

No.

BDWD-HQPK



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

BDWD-HQPK



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

Is BDWD-HQPK done yet?

No.

BDWD-HQPK



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

BDWD-HQPK
I came here from a QR code! 
The code is “BDWD-HQPK“.

Who are you? 
Please log in.



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

Is BDWD-HQPK done yet?

No.

BDWD-HQPK



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

BDWD-HQPK

I am GooglePhotosLover89! My password is “ph0to5Rcool!”! 
I consent to Digital Picture Frame getting “photo.read” 
access 
to my resources on api.google.com.

Success. Close 
your browser.



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

Is BDWD-HQPK done yet?

BDWD-HQPK

Success: 
{refresh token}
{access token}



OAuth 2.0 Flows – Device Code

api.google.com

account.google.com

Digital Picture Frame

I want to get a list of photos. I have an access key.

Success:
{list_of_photos}



Digital Picture Frame

OAuth 2.0 Flows – Device Code

api.google.com

account.google.com



Twitter: @mattcotterellnz
Email: 

matt.cotterell@zxsecurity.co.nz

Questions?


