
Web Apps – Hardening Too Hard

Nick Lauder

Me – nick@quantumsecurity.co.nz

What I do

• Penetration Tester

• Security Consultant for Quantum

Interests

• Wireless stuff

• Embedded dev

• Electronics

Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen

Why are we here?

• Talking about general web application hardening

• Covering a wide range of topics

• Aimed at developers and security enthusiasts

Why should you care?

• We find these issues in almost every web application

• Make pentesters spend time finding the issues that have real
impacts

• Helps to improve your security hygiene across your applications

• All this is learnt from pentesting and standing up my own web
applications

Overview

• Issues
• Weak TLS Configuration

• Weak HTTP Security Header Configuration

• Weak Cookie Configuration

• Version Number Disclosure

• Lack of CSRF Tokens

• Sequential Object IDs

• (More if we have time)

• Summary

What is TLS/SSL/HTTPS? 🤷‍♂️

😭

What makes up TLS?

Protocols

• SSLv2

• SSLv3

• TLSv1.0

• TLSv1.1

• TLSv1.2

• TLSv1.3

Ciphers
• Key Exchange

• RSA
• DHE
• ECDHE

• Authentication
• RSA
• ECDSA
• DSS

• Encryption
• AES GCM/CCM/CBC
• CHACHA20_POLY1305

• Hashing
• SHA 1/2/3
• MD5

What issues do we see?

Protocols

• TLSv1.0
• POODLE

• BEAST

• TLSv1.1
• Not inherently insecure, but

improvements have been made

Ciphers

• RSA
• No forward secrecy

• AES CBC
• Padding Oracle

• POODLE

• SHA1
• SHAppening

• SHAttered

How to stop
the hacker?

Fixing common TLS issues

Loads of free tools to help!

• Best Practice Guides
• OWASP -

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_
Cipher_String_Cheat_Sheet.md

• IETF - https://tools.ietf.org/html/draft-ietf-uta-rfc7525bis-00
• Qualys - https://www.ssllabs.com/projects/best-practices/

• Configuration
• https://ssl-config.mozilla.org/

• Scanners
• https://www.ssllabs.com/ssltest/index.html
• https://testtls.com/

Fixing common TLS issues

My Recommendations

• Protocols
• TLSv1.3

• TLSv1.2

• Ciphers
• ECDHE for key exchange

• ECDSA for authentication

• AES256 GCM

• SHA384

• TLSv1.3
• TLS_AES_256_GCM_SHA384

• TLSv1.2
• TLS_ECDHE_ECDSA_AES_256_GCM_SHA384

Issues you may encounter

• Support for legacy clients?
• Support for TLSv1.0 and TLSv1.1 is already gone!

• ECDSA for authentication?
• Requires an ECDSA certificate authority (Not uncommon, but

may not be default)

HTTP Security Headers

They activate what is already available!

• Modern
• Content Security Policy (CSP)

• Strict Transport Security (HSTS)

• Cross Origin Resource Sharing (CORS)

• Aging
• X-Content-Type-Options

• X-Frame-Options

• X-XSS-Protection

• Referrer-Policy

Easy to fix

• HSTS
• Strict-Transport-Security: max-age=31536000; includeSubDomains

• X-Content-Type-Options
• X-Content-Type-Options: nosniff

• X-Frame-Options
• X-Frame-Options: DENY

• X-XSS-Protection
• X-XSS-Protection: 1; mode=block

• Referrer-Policy
• Referrer-Policy: no-referrer

Some great resources

• Documentation

• Scanning tool
• https://observatory.mozilla.org/ – Scans HTTP headers and provides rating

Context dependent headers

• CORS - What is it?
• Used to prevent third-party applications retrieving content from your site

Common issues:
• Access-Control-Allow-Origin: *

• hmm😠

• Needed on public APIs

• How to do properly:
• Access-Control-Allow-Origin: https://yourwebsite.link

• Few more CORS headers but they are more specific to your use case

The hard one…

• Content Security Policy (CSP) – What does it do?
• Bit of everything really – Built up of directives to activate browser protections

• Obsoletes a lot of the previously mentioned headers

• Directives
• default-src – sets a default values for all directives

• frame-ancestors – chooses where the page can be loaded in a frame

• form-action – chooses where forms can submit to

• base-uri – specifies valid values for the base element

• script-src – chooses where to load JavaScript from

• object-src – chooses where to load objects from (object, embed, applet tags)

• upgrade-insecure-requests – redirects http to https

What attacks can CSP prevent

• Cross-Site Scripting (XSS)
• script-src – replaces X-XSS-Protection
• object-src
• worker-src
• base-uri

• Clickjacking
• frame-ancestors – replaces X-Frame-Options
• child-src
• frame-src

• Formjacking
• form-action
• base-uri

What can go wrong?

Functionality

• script-src
• ‘example.com’

• Prevents all inline code and any
resources

• ‘none’
• Prevents loading of all JS

• ‘nonce-<base64-value>’
• Requires additional web app

functionality

• ‘<hash>’
• Requires changing policy with every

JS file change

Security

• script-src
• ‘unsafe-inline’

• Allows all inline code, even without
hashes/nonce

• ‘example.com’
• Allows all content from

example.com… May not be safe

• ‘self’
• Allows for self hosted files, but may

be attacker uploaded?

How to do it right

Use the free resources!

• Header Evaluators
• https://observatory.mozilla.org/ – header scanner with scores
• https://github.com/GoSecure/csp-auditor – OWASP Zap/Burp Suite CSP plugin
• https://cspscanner.com/ – In-depth CSP evaluator

• Configurators
• https://report-uri.com/home/generate - Graphical, step-by-step CSP generator

• Best Practice Guides
• https://owasp.org/www-project-secure-headers/ – OWASP on headers
• https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_S

heet.html – OWASP on CSP
• https://infosec.mozilla.org/guidelines/web_security - General web security

Cookies 🍪

What is a cookie 🍪

• They track where you are (but sometimes in a good way)

• Set by the web server

• Often used to store authentication tokens

Baking a cookie

• Set-Cookie HTTP response header

• Flags
• Secure – Only transmitted over HTTPS

• HTTPOnly – Not accessible via JavaScript

• SameSite=None|Lax|Strict – Prevents inclusion if request originates
from a separate page

• Set-Cookie: token=V2h5IGFyZSB5b3UgbGlrZSB0aGlzPw==;
Secure; HTTPOnly; SameSite=Strict

Ingredients

• Secure
• Prevents against man-in-the-middle (MITM) attacks

• HTTPOnly
• Prevents access to auth token during XSS attacks

• SameSite
• None – Send cookie with every request to the owning domain
• Lax – Sends cookie only when redirecting to owning domain
• Strict – Sends cookie only when originating from owning domain

• Max-Age
• Sets the lifetime of the cookie

• Domain
• Sets the domain that the cookie is valid path

• Path
• Sets the URL path that the cookie is valid for

Common issues

• Not setting the flags
• Uncommon to see the flags breaking the application

• WAFs, Proxies, load balancers add their own cookies

• Generating cookies insecurely (Session Management issue)
• “HackTheBox Special”

Set-Cookie: token=eyJ1c2VybmFtZSI6InVzZXIiLCJyb2xlIjoiYWRtaW4ifQ==; Secure; HTTPOnly; SameSite=Strict;

{"username":"user", "role":"user"}

Cooking tips

• Use all the flags
• If this breaks something, review what broke rather then removing the

control

• Generate cookies securely (random)

• Set restrictive scope and lifetimes
• Short lifetimes for only the specific domains/paths you require

Version Number Disclosure

This includes:

• Web servers

• JavaScript libraries

• Web Application Firewalls (WAFs)

• PDF Generators

So what?

Well done, you discovered that we use a web server to host a website👏

Increases your exposure 

• As an targeted attacker/pentester?
• Big arrow saying exploit here

• CVEs provide a nice list of potential vulnerabilities

• Saves me a whole lotta time

• As a script kiddie?
• Automated tools may identify your site as vulnerable (Shodan)

• Attracts attention that may have passed by

• Advertising your vulnerabilities when new exploits released?

How to fix?

• Web servers
• Stop returning the Server header
• Stop returning stack traces as error messages
• Stop using default error messages

• JavaScript libraries
• Minify/Compress production files
• Remove comments

• WAFs
• Stop using headers to advertise the WAF product

• PDF Generators
• Configure so that they don’t include information in

the metadata

How to fix?

• Web servers
• Stop returning the Server header
• Stop returning stack traces as error messages
• Stop using default error messages

• JavaScript libraries
• Minify/Compress production files
• Remove comments

• WAFs
• Stop using headers to advertise the WAF product

• PDF Generators
• Configure so that they don’t include information in

the metadata

Side Note:
Update your underlying software…
9/10 times we find that disclosed software is out of date

Cross-Site Request Forgery

Cross-Site Request Forgery

What’s the issue?

• When requesting a domain, cookies are automatically included

• Request becomes authenticated

• Makes the outcome of the request the same as if you did it

• Last example showed a change password request, resulting in the
malicious website changing Kento’s password

But we’ve already fixed 😠

Cookies with SameSite set well help to prevent this!

• Applies as a blanket across entire site

• May break functionality

• Have to manage trusted vs untrusted resources

What is dis?

CSRF/XSRF Token

• Randomly generated nonce

• Included with every page load

• Sent with every submission (POST)

• Token verified server side against what was provided

• Supported by lots of frameworks

How to implement

• Existing Solutions
• Java – OWASP CSRF Guard or Spring Security

• PHP – CSRFProtector Project

• AngularJS – XSRF Protection

• Manually
• Generate nonce server side and store along side session token

• Send token in hidden HTML form field

• On form submission, compare provided token with stored value

Resources

• OWASP Cheat Sheet!
• https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

• PortSwigger
• https://portswigger.net/web-security/csrf/tokens

• Your framework documentation!

Sequential Object IDs

Unique identifiers used to call specific objects

• Users

• Posts

• Pictures

• Uploads

• Groups

What causes?

http://myapi/api/v1/users/1/profile

Problem?

http://myapi/api/v1/users/1/profile

If my profile is at the link:
http://myapi/api/v1/users/1/profile

Then maybe I can access:
http://myapi/api/v1/users/2/profile

This allows for broken access control to be exploited

But I like my numbers 

http://myapi/api/v1/users/11cf1b66-5982-4661-b399-6472c330a4b8/profile

Sorry about your API 🤷‍♂️

Speedrun
• Error Handling

• Use custom messages – no stack traces or default pages

• Password policies
• 14 min limit with no max limit and at least one non-letter plz

• User enumeration
• Return generic messages on forgot password page

• Other services
• Stop running SSH on your web server

• XSS
• Validate and sanitise user input everywhere

• No MFA
• MFA isn’t hard anymore, at least do it for admins

• No brute-force protections
• Account lockout
• Rate limiting
• CAPTCHA

Summary

• So many free scanning tools

• Scan and fix your own stuff before a pentest

• Resources and documentation are everywhere

• Pentesters want to find the big issues

• OWASP has an article on everything

Actual takeaways

• Make the pentesters work hard
• More value in 2 highs than 10 lows

• Genuinely may not be able to fix them all
• But knowing your issues is great proof of knowledge

• Really satisfying when your webapp is done right
• Big grin when my internal apps were pentested

Thanks for coming

Come and talk to me about
• Working at Quantum

• Issues I’ve encountered with fixing these issues

• Unique ways to rick roll someone

Questions?

