Top 10 CI/CD Security Risks

Daniel Krivelevich Co-Founder & CTO Cider Security

Omer Gil Head Of Research Cider Security

@omer_gil

.

What is CI/CD security?

The engineering train moves faster and faster...

The engineering ecosystem

The challenge

The Security Perspective

CI/CD Security

- The changes in the engineering ecosystem have changed the way our attack surface looks like
- CI/CD security is about adapting to these changes
- 2021 A pivotal year for CI/CD security

Top 10 CI/CD Security Risks

Insufficient Flow Control Mechanisms

Inadequate Identity and Access
Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System
Configuration

Ungoverned Usage of 3rd Party Services

Improper Artifact
Integrity Validation

Insufficient Logging and Visibility

Reviewers

RAPID

Jonathan Claudius

Director of Security Assurance at Mozilla

moz://a

Michael Coates

CEO & Co-Founder at Altitude Networks, Former CISO at Twitter

Jonathan Jaffe

CISO at Lemonade Insurance

Lemonade

Adrian Ludwig

Chief Trust Officer at Atlassian

XAtlassian

Travis McPeak

Head of Product Security at Databricks

Ron Peled

Founder & CEO at ProtectOps, Former CISO at LivePerson

Ty Sbano

CISO at Vercel

Astha Singhal

Director, Information Security at Netflix

NETFLIX

Hiroki Suezawa

Security Engineer at Mercari, inc.

mercari

Tyler Welton

Principal Security Engineer at Built Technologies, Owner at Untamed Theory

.

built

Tyler Young

Head of Security at Relativity

母Relativity

Noa Ginzbursky

DevOps Engineer at Cider Security

(C) Cider

Asi Greenholts

Security Researcher at Cider Security

(Cider

Analysis of breach anatomies

PHP Git infrastructure compromise

Case Study #1

PHP Git infrastructure compromise

https://news-web.php.net/php.internals/113838 https://news-web.php.net/php.internals/113842

Malicious PHP version distributed to consumers

Top 10 CI/CD Security Risks

Insufficient Flow Control Mechanisms

Inadequate Identity and Access
Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System
Configuration

Ungoverned Usage of 3rd Party Services

Integrity Validation

Insufficient Logging and Visibility

Insufficient Flow Control Mechanisms

CICD-SEC-1

Abusing CI/CD misconfigurations to single handedly push unreviewed code or artifacts down the pipeline.

Prevention / Detection of merging unapproved code

Insecure System Configuration

CICD-SEC-7

Flaws in the security settings, configuration and hardening of the different systems across the pipeline (e.g. SCM, CI, Artifact repository).

Self hosted Git with insufficient security hardening

Improper Artifact Integrity Validation

CICD-SEC-9

A lack of mechanisms for validating the integrity of code and artifacts, allows an attacker with access to one of the systems in the CI/CD to push malicious code or artifacts down the pipeline.

Signed commits

Insufficient Logging and Visibility

CICD-SEC-10

Malicious activities can be carried out within the CI/CD environment without any correlating detective and investigative capabilities.

Essential base layer for coping with all CI/CD security risks

Stack Overflow Breach

Case Study #2

Stack Overflow breach

Top 10 CI/CD Security Risks

Insufficient Flow
Control Mechanisms

Inadequate Identity and Access
Management

Dependency <mark>Ch</mark>ain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System
Configuration

Ungoverned Usage of 3rd Party Services

Improper Artifact
Integrity Validation

Insufficient Logging and Visibility

Inadequate Identity and Access Management

CICD-SEC-2

Poorly managed/governed identities – both human and programmatic – across the different systems in the engineering ecosystem.

- Inactive account not revoked
- Service account logs in interactively
- Admin privileges as a base permission

Insufficient Credential Hygiene

CICD-SEC-6

Obtaining and abusing secrets and tokens spread throughout the CI/CD ecosystem due to poor access controls, insecure secret management and overly permissive credentials.

 Static credentials stored in cleartext in the codebase, build system, and configuration files

Additional risks

Configuration

 Self-hosted SCM & CI exposed to the internet

Environment variables exfiltration through Codecov

Case Study #3

Environment variables exfiltration through Codecov

https://about.codecov.io/security-update/

Top 10 CI/CD Security Risks

Insufficient Flow Control Mechanisms

Inadequate Identity and Access
Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System Configuration

Ungoverned Usage of 3rd Party Services

Integrity Validation

Insufficient Logging and Visibility

Insufficient PBAC (Pipeline-Based Access Controls)

CICD-SEC-5

Abusing the permission/access granted to the pipeline execution nodes for moving laterally within or outside the CI/CD system.

 Overly permissive pipeline execution environments

Ungoverned Usage of 3rd Party Services

CICD-SEC-8

Risks which rely on the extreme ease with which a 3rd party service can be granted access to resources in CI/CD systems, effectively expanding the attack surface of the organization.

 Minimal investigative capabilities around existence/permissions of Codecov

Additional risks

Insufficient

Credential

Hygiene

 Sensitive secrets stored as global environment variables

Improper Artifact
Integrity
Validation

 Integrity checks not performed prior to executing Codecov script

Insufficient Logging and Visibility

Travis CI secrets exposure

Case Study #4

Travis CI secrets exposure

Top 10 CI/CD Security Risks

Insufficient Flow Control Mechanism

Inadequate Identity and Access
Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System Configuration

Ungoverned Usage of 3rd Party Services

Improper Artifact
Integrity Validation

Insufficient Logging and Visibility

Poisoned Pipeline Execution (PPE)

CICD-SEC-4

The ability of an attacker that has obtained access to an SCM repository, to run malicious code in the CI - despite not having access to it - by manipulating the pipeline configuration.

 Execution of a PPE attack to exfiltrate pipeline secrets

Additional risks

Insufficient Credential Hygiene

- Secrets the pipeline shouldn't access
- Permissive credentials

Insufficient Logging and Visibility

- Identify potentially vulnerable repos
- Identify an actual breach

Dependency Confusion

Case Study #5

Dependency Confusion

Top 10 CI/CD Security Risks

Insufficient Flow Control Mechanisms

Inadequate Identity and Access
Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System Configuration

Ungoverned Usage of 3rd Party Services

Improper Artifact Integrity Validation

Insufficient Logging and Visibility

Dependency Chain Abuse

CICD-SEC-3

Abusing code dependency fetching configuration – to cause an unsuspecting client to fetch and execute a malicious package

 Dependency confusion abuses the dependency chain by taking advantage of misconfigured package fetching processes

Additional Risks

Insufficient PBAC (Pipeline-Based Access Controls)

 Packages installed and executed on overly permissive execution nodes

Takeaways

• A shift in mindset

The changes in the engineering ecosystem have reshaped our attack surface. Engineering environments, systems and processes have become a big part of our attack surface.

- A different approach to AppSec
 - Application Security extends far beyond securing the code. We need to build an overarching security umbrella over all systems and processes all the way from code to deployment.
- Comprehensive mapping of your engineering ecosystem
 - Security teams must develop practices and controls to allow them to continuously map the technical elements that comprise their engineering ecosystem.
 - A full mapping of the ecosystem including all 3rd party access is the only way to have a true understanding of our attack surface.
- Continuous analysis against the attacker's perspective
 Once strong visibility over the engineering ecosystem is achieved, an analysis against the attacker's perspective using the Top 10 CI/CD risks is required.
- Build and optimize CI/CD security programs

 A continuous effort to optimize CI/CD posture is required to ensure that the velocity and dynamic nature of engineering ecosystem to not increase risk.

Thanks!

Daniel Krivelevich Co-Founder & CTO Cider Security

@dkrivelev

Omer Gil Head Of Research Cider Security

@omer_gil

