
Fix Every Instance
OWASP NZ Day 2022

Who is this person?

Tim Goddard

Principal Security Consultant @ CyberCX

Ex-Software Developer, Focus on AppSec and
Code Review.

Thank You to Our Sponsors and Hosts!

Without them, OWASP New Zealand Day couldn’t happen

So your project had a
pentest…

💥💥💥 Command Injection (Remote Code Execution)

🔥🔥🔥 Arbitrary File Read (Path Traversal)

🔥🔥🔥 Cross-Site Scripting

Summary

OMG THE WORLD IS BURNING!!!!!!

Issues

Ye Olde Ticketing System

Sprints

Backlogs

TODO

Security

Probably oughta

More tickets

Fix Command Injection New P1: Important Unassigned

Fix XSS New P1: Important Unassigned

Fix Path Traversal New P1: Important Unassigned

Ye Olde Ticketing System

Sprints

Backlogs

TODO

Security

Probably oughta

More tickets

Fix SQL Injection← Back

Reproduction Steps

The blah widget has a SQL injection vulnerability in the foozle procedure. By
providing input like the following in the email field, you can see some funny-looking
records and probably do some other things:

‘ OR ‘1’=’1

Dev team closed all
the tickets… so we’re
done, right?

Findings are rarely, if ever, complete

Penetration tests are not exhaustive.

Some bugs require conditions which did not, or cannot occur.

Pentesting != Code Review

Fix bug classes, not bugs

Bugs occur in repeating classes.

Whenever you see a report, ask whether this could represent a recurring pattern.

Search for more instances of the same pattern.

Fix them all in a consistent way.

So we have a finding…

Ye Olde Ticketing System

Sprints

Backlogs

TODO

Security

Probably oughta

More tickets

Find and Fix Directory
Traversal Cases

← Back

Identify the cause of this issue, find and fix any similar issues in the codebase.

Example instance

The blah widget includes user input to identify which file to load its description from.
The “id” parameter is directly included in the filename, which can result in loading
files from a different directory, by including an expression like the following:

../../../../etc/passwd%00

How?

if (array_key_exists ("id", $_GET) && array_key_exists ("security", $_GET)) {

 $id = $_GET['id'];

 $security = $_GET['security'];

 switch ($id) {

 case "fi" :

 $vuln = 'File Inclusion';

 Break;

…
 default:

 $vuln = "Unknown Vulnerability";

 }

 $source = @file_get_contents(DVWA_WEB_PAGE_TO_ROOT .

"vulnerabilities/{$id}/source/{$security}.php");

Locate the code in question

Commercial

SAST Scanner

Semgrep

How to find similar instances?

Semgrep = “Semantic Grep”

Search for vulnerabilities (or other things) in code.

Core tool is open source.

Understands the structure of the code.

Search patterns look like code (mostly).

rules:

 - id: php-path-traversal

 message: Do not propagate user inputs to file names

 severity: ERROR

 languages:

 - php

 patterns:

 - pattern: |

 $VAR = $_GET[...];

 ...

 file_get_contents(<... $VAR ...>, ...);

Write a rule to match

if (array_key_exists ("id", $_GET) && array_key_exists

("security", $_GET)) {

 $id = $_GET['id'];

 $security = $_GET['security'];

 switch ($id) {

 case "fi" :

 $vuln = 'File Inclusion';

 Break;

…
 default:

 $vuln = "Unknown Vulnerability";

 }

 $source = @file_get_contents(

DVWA_WEB_PAGE_TO_ROOT .

"vulnerabilities/{$id}/source/{$security}.php");

How the code is matched…

$VAR = $_GET[...]; $VAR := $id

…

file_get_contents(<... $VAR …>, …);

 $id = $_GET['id'];

 $security = $_GET['security'];

 ...

 $filename = DVWA_WEB_PAGE_TO_ROOT . "vulnerabilities/{$id}/source/{$security}.php";

 $source = @file_get_contents($filename);

What if our code were this?

rules:

 - id: php-path-traversal

 message: Do not propagate user inputs to file names

 severity: ERROR

 languages:

 - php

 mode: taint

 pattern-sources:

 - pattern: $_GET[...]

 pattern-sinks:

 - pattern: file_get_contents(...)

Deal with intermediate vars in “taint” mode

NB: Taint mode does not trace taint between functions, or understand conditions. Very simple rules.

rules:

 - id: php-path-traversal

 message: Do not propagate user inputs to file names

 severity: ERROR

 languages:

 - php

 mode: taint

 pattern-sources :

 - pattern: $_GET[...]

 - pattern: $_POST[...]

 - pattern: $_REQUEST[...]

 - pattern: $_COOKIE[...]

 - pattern: $_SERVER[...]

 pattern-sinks :

 - pattern: file(...)

 - pattern: file_get_contents(...)

 - patterns:

 - pattern-inside : file_put_contents($FILE, ...)

 - pattern: $FILE

Expand to cover other options…

As we expand, there will be false positives

function CheckCaptcha($key, $response) {

 try {

 $url = 'https://www.google.com/recaptcha/api/siteverify';

 $dat = array(

 'secret' => $key,

 'response' => urlencode($response),

 'remoteip' => urlencode($_SERVER['REMOTE_ADDR'])

);

Exclude criteria that identify the safe instances

 pattern-sinks:

 - pattern: file(...)

 - pattern: file_get_contents(...)

 - patterns:

 - pattern-inside: file_put_contents($FILE, ...)

 - pattern: $FILE

 pattern-sanitizers:

 - pattern: urlencode(...)

Note urlencode is not a complete sanitizer for file names. In our code,
however, it might be a good heuristic.

… choose the assumptions you’re comfortable with …

 pattern-sources:

 - pattern: $_GET[...]

 - pattern: $_POST[...]

 - pattern: $_REQUEST[...]

 - patterns:

 - pattern: $_SERVER[...]

 - pattern-not: $_SERVER['REMOTE_ADDR']

 - pattern: $_COOKIE[...]

We’re making a different assumption here - that “REMOTE_ADDR” can
only be set to safe values.

Fix everything!

If it’s a bad pattern, why prove vulnerability?

Deploy as a pipeline
test…

Reuse for similar
apps.

Ask not what is bad,
ask what is good.

Choose your own standards

Chances are you already have an agreed standard/convention for dealing with
database queries, HTML generation, URL construction, etc.

You can write a strict rule, which enforces this convention.

Some conventions are better than others, but nearly any convention is better than
none.

If you would like to parametrise all SQL queries, turn to page 15.

If you would like to sanitise queries by hand, turn to page 97.

E.g. All SQL queries must be composed of static strings
rules:

 - id: enforce-safe-pdo

 message: All SQL queries must be composed of static strings only.

 severity: WARNING

 languages:

 - php

 patterns:

 - pattern-inside : |

 ...

 $DBO->query(<... $QUERY ...>, ...);

 - pattern-either :

 - pattern: $QUERY = $NONSTATIC;

 - pattern: $QUERY .= $NONSTATIC;

 - metavariable-pattern :

 metavariable : $NONSTATIC

 patterns:

 - pattern-not: '"..."'

Standard breach = bug

Key Points

● Fix bug classes, not bugs.
● Fix every instance you can find of a bug.

… even in other applications that may have been built similarly.

● Use rules to prevent re-introduction of issues in CI/CD.
● Ideally, choose one safe way, rather than trying to detect all possible bad

ways.

Questions → Whoova Session Q&A

