
Not Under the Doormat
Securing your database credentials on the web application
client side

Helen Huang
Security Consultant
Aura Information Security

whoami

● Lives in Auckland
● Security Consultant / Penetration Tester at

Aura Information Security
● Ex-Software Engineer
● Recently promoted to being a mum!

Agenda

1. Background
2. Case study
3. Implementations with S3 pre-signed URLs
4. Security considerations of pre-signed URLs

Web Application Architecture

Web Application Architecture

Web Application Architecture

Web Application Architecture

Web Application Architecture

Web Application Architecture

Case Study

Case Study

Real engagement with a NZ company

Case Study

Real engagement with a NZ company

Exposed credentials -> database breach

Case Study

File upload functionality on an administrator portal

Case Study

HTTP REQUEST

Case Study
HTTP RESPONSE

Case Study
HTTP RESPONSE

Case Study

Decoding the awsconfig variable

Case Study

Decoding the awsconfig variable

Case Study

.../admin/build/main.js

JavaScript code which uses the
awsconfig variable to access
S3 bucket and upload

Case Study

Using AWS Command Line Interface (CLI) to access the S3 bucket

Case Study

Case Study

Case Study

Case Study

Case Study

Case Study

Any user of the web application who had access to the upload
functionality had access to all the database backups from this company

OWASP TOP 10 - Cryptographic Failures

OWASP TOP 10 - Cryptographic Failures

Sensitive Data Exposure -> Cryptographic Failures

OWASP TOP 10 - Cryptographic Failures

Sensitive Data Exposure -> Cryptographic Failures

Moved up from #3 from 2017 -> #2 in 2021

OWASP TOP 10 - Cryptographic Failures

OWASP TOP 10 - Cryptographic Failures

What should we do?

What should we do?

We want:

What should we do?

We want:

Uploading directly from the client front end

What should we do?

We want:

Uploading directly from the client front end

But the client shouldn’t have access to the credentials!

What should we do?

We want:

Uploading directly from the client front end

But the client shouldn’t have access to the credentials!

How can the client upload without credentials?

What should we do?

AWS Pre-signed URL!

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Anyone with access to it can perform the action embedded in the URL as if they
were the original signing user.

New Upload Approach

New Upload Approach

Two step process:

New Upload Approach

Two step process:

1. Obtain a pre-signed URL from the backend

New Upload Approach

Two step process:

1. Obtain a pre-signed URL from the backend
2. Use the pre-signed URL to upload the object

New Upload Approach

Creating Pre-signed URL in Python

Creating Pre-signed URL in Python

Pre-signed URL

Securing Pre-signed URLs

Like with everything - they need to be implemented securely!

Securing Pre-signed URLs

1. Limiting expiry time

Securing Pre-signed URLs

1. Limiting expiry time
Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

Securing Pre-signed URLs

1. Limiting expiry time
Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

The default pre-signed URL expiration time is 15 minutes.

Securing Pre-signed URLs

1. Limiting expiry time
Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

The default pre-signed URL expiration time is 15 minutes.

Keep it to the minimum possible.

Securing Pre-signed URLs

2. Least Privilege

Securing Pre-signed URLs

2. Least Privilege
Create a separate IAM role in AWS that has the least amount of privilege.

Securing Pre-signed URLs

2. Least Privilege
Create a separate IAM role in AWS that has the least amount of privilege.

Only grant the necessary permissions (e.g. read object, put object)

Securing Pre-signed URLs

2. Least Privilege
Create a separate IAM role in AWS that has the least amount of privilege.

Only grant the necessary permissions (e.g. read object, put object)

Really good for incident response and revocation

IAM Policy

Securing Pre-signed URLs

3. Control File Content

Securing Pre-signed URLs

3. Control File Content
Once a pre-signed URL is generated, normally you don’t have control over who can
upload a file or what file is uploaded.

Securing Pre-signed URLs

3. Control File Content
Once a pre-signed URL is generated, normally you don’t have control over who can
upload a file or what file is uploaded.

Specify the Content-MD5 header while generating the pre-signed URL with the
hash of the file being uploaded.

Securing Pre-signed URLs

3. Control File Content
Once a pre-signed URL is generated, normally you don’t have control over who can
upload a file or what file is uploaded.

Specify the Content-MD5 header while generating the pre-signed URL with the
hash of the file being uploaded.

Enforce the presigned URL to be valid only if the specified value for this header is
the same from the one specified, and the one received by the
user while uploading a file.

Securing Pre-signed URLs

4. Enable Logging

Securing Pre-signed URLs

4. Enable Logging
This applies even if you don’t use pre-signed URL.

Securing Pre-signed URLs

4. Enable Logging
This applies even if you don’t use pre-signed URL.

Server access logging provides detailed records for the requests that are made to
a bucket.

Securing Pre-signed URLs

4. Enable Logging
This applies even if you don’t use pre-signed URL.

Server access logging provides detailed records for the requests that are made to
a bucket.

Not enabled by default.

Securing Pre-signed URLs

1. Limiting expiry time
2. Least Privilege
3. Control File Content
4. Enable Logging

Takeaway

Remember: everything that you send to the front end
client is visible to the end user

Every time when you are working with any type of
credentials - think really carefully about where it’s stored!

Thank you!

email: helen.jiahe.huang@gmail.com

linkedin: www.linkedin.com/in/helen-jiahe-huang/

twitter: @__helenhuang

