Not Under the Doormat

Securing your database credentials on the web application
client side

Helen Huang
Security Consultant
Aura Information Security

POWERED
BY KORDIA

¢) aAuIra

INFORMATION SECURITY

whoami

e Livesin Auckland

e Security Consultant / Penetration Tester at
Aura Information Security

e Ex-Software Engineer

Recently promoted to being a mum!

Thank You to Our Sponsors and Hosts!

iono & A
SicybercX DATACOM g snyk

V.:O AuthO0 Checkmaxrxrx QHCL AppScan kardia

LATERAL [TIMLIERD @ruesen 25 RedShield

ﬁlﬁ Flux SEQA @Cobalt \J LACEWORK @, SecureFlac

Information Security

Without them, OWASP New Zealand Day couldn’t happen

Agenda

Background

Case study
Implementations with S3 pre-signed URLs

Security considerations of pre-signed URLs

Hwnh -

Web Application Architecture

Web Application Architecture

Visits Website

— (B

Displays Result

Web Application
(Frontend)
User HTML, CSS, Javascript

What the user sees & interacts with

Web Application Architecture

o —-— e—

Visits Website Request I .

— o —-— -

.) Response - - _
Displays Result P o

Web Application Application Server
(Frontend) (Backend)
User HTML, CSS, JavaScript PHP, Java, Python, C#, JavaScript

What the user sees & interacts with Contains the application logic

Web Application Architecture

o —-_——
Visits Website — Request r +
—— = o
s) Response - - _
Displays Result g o
Web Application Application Server
(Frontend) (Backend)
taer HTML, CSS, JavaScript PHP, Java, Python, C#, JavaScript
What the user sees & interacts with Contains the application logic
-
B ~—
o
-
-
]
Database

MySQL, MSSQL, PostgreSQL

Web Application Architecture

o —-— -
Visits Website Request r .
—. o -— -
.) Response - - _
Displays Result P o
Web Application Application Server
(Frontend) (Backend)
User HTML, CSS, JavaScript PHP, Java, Python, C#, JavaScript
What the user sees & interacts with Contains the application logic
Uploa‘cy l]>
Aetrieve
e
D
T
o
Storage Database

AWS S3, Azure Blob Storage MySQL, MSSQL, PostgreSQL

Web Application Architecture

o —-_——
Visits Website Request r .
—. o L]
s) Response - - _
Displays Result P o
Web Application Application Server
(Frontend) (Backend)
User HTML, CSS, JavaScript PHP, Java, Python, C#, JavaScript
What the user sees & interacts with Contains the application logic
Upload l l Retrieve l I
-
B ~—
o
-
-
:]
Storage Database

AWS S3, Azure Blob Storage MySQL, MSSQL, PostgreSQL

Case Study

BN

Case Study

Real engagement with a NZ company

Case Study

Real engagement with a NZ company

Exposed credentials -> database breach

Case Study

File upload functionality on an administrator portal

=7 pancake Solutions

—
uPload any file

Case Study

HTTP REQUEST

POST /media/upload/link HTTP/1.1
Host: pancakesolutions.co.nz

name=test&description=document&purpose=material&upload_size=5&upload_name=test.txt&upload_
mimetype=text%2Fplain

Case Study

HTTP RESPONSE

HTTP/1.1 200 OK

{

"success":true,
"message”:"Upload url generated successfully.",
"payload":{
"storage_service":"amazon-s3",
"media_1id":17,
"storage_key":"5fd93beace2lb. txt",
"awsconfig":"eyJhY2N1c3Nfa2V5X21kIjoi1QUtJQTROWFZXVUZDV
FFWVTQ2WIM1LCIhY2N1c3Nfa2V5X3N1Y3JldCI6I jZ4M25ERWt3QUK1bTIL
ZT1sNWdJZTFXQitySHc4b3Awb jVReDIwbkI1LCI1dWNrZXQi01JwYW5jYWt
1c29sdXRpb25zLXVhdCIsInJ1Z21lvbi1I6ImFwLXNVdAXRoZWFzdCOyIn0O="
I
}

Case Study

HTTP RESPONSE

HTTP/1.1 200 OK

{

"success":true,

"message”:"Upload url generated successfully.",

"payload":{
"storage_service":"amazon-s3",
"media_1id":17,
"storage_key":"5fd93beace2lb. txt",

"awsconfig"|: "eyJhY2N1c3Nfa2V5X21kIjoi1QUtJQTROWFZXVUZDV
FFWVTQ2WIM1LCIhY2N1c3Nfa2V5X3N1Y3JldCI6I jZ4M25ERWt3QUK1bTIL
ZT1sNWdJZTFXQitySHc4b3Awb jVReDIwbkI1LCI1dWNrZXQi01JwYW5jYWt
1c29sdXRpb25zLXVhdCIsInJ1Z21lvbi1I6ImFwLXNVdAXRoZWFzdCOyIn0O="

I
}

Case Study

Decoding the awsconfig variable

$ echo
"eyJhY2N1c3Nfa2V5X21kIjo1QUtIJQTROWFZXVUZDVFFWVTQ2WIM1LCIhY2N1c3NTfa2V5X3N1Y3Jl
dCI6IjZ4M25ERWt3QUK1IbTILZTLsNWAIZTFXQitySHc4b3Awb jVReDIwbKI1LCI1dWNrZXQi0iJwY
W5jYWt1c29sdXRpb25zLXVhdCIsInJ1Z21lvbiI6ImFWLXNVdXRoZWFzdCOyIn@=" | base64 -d

{"access_key_1id":"AKIA4ANXVWUFCTQVU46ZS","access_key_secret":"6x3nDEKkwAI5m2ee9
L59IelWB+rHw8op0On5Qx2pnB", "bucket" : “pancakesolutions-uat","region":"ap-
southeast-2"}

Case Study

Decoding the awsconfig variable

$ echo
"eyJhY2N1c3Nfa2V5X21kIjo1QUtIJQTROWFZXVUZDVFFWVTQ2WIM1LCIhY2N1c3NTfa2V5X3N1Y3Jl
dCI6IjZ4M25ERWt3QUK1IbTILZTLsNWAIZTFXQitySHc4b3Awb jVReDIwbKI1LCI1dWNrZXQi0iJwY
W5jYWt1c29sdXRpb25zLXVhdCIsInJ1Z21lvbiI6ImFWLXNVdXRoZWFzdCOyIn@=" | base64 -d

{'access_key_1i1d":"AKIA4ANXVWUFCTQVU46ZS","access_key secret':"6x3nDEKkwAI5m2ee9
L59IelWB+rHw8op0On5Qx2pnB", "bucket" : “pancakesolutions-uat","region":"ap-
southeast-2"}

Case Study

.../admin/build/main.js

JavaScript code which uses the
awsconfig variable to access
S3 bucket and upload

var a = JSON.parse(atob(t.payload.awsconfiq));
n.a.config.update({
accessKeyId: a.access_key_id,
secretAccessKey: a.access_key_secret,
region: a.region
i
var u = (new n.a.S3).upload({
Key: t.payload.storage_key,

Body: this.filelnput.files[0],
ContentType: this.fileInput.files[0].type,
Bucket: a.bucket,

ACL: "bucket-owner-full-control"

Case Study

Using AWS Command Line Interface (CLI) to access the S3 bucket

$ aws configure

AWS Access Key ID [None]: AKIA4NXVWUFCTQVU46ZS

AWS Secret Access Key [None]: 6x3nDEkwAI5m2ee915gIelWB+rHw8op®n5Qx2pnB
Default region name [None]: ap-southeast-2

Default output format [None]: json

Case Study

2020-06-16 23

$ aws s3 1s 2020-06-16 23:07:06 -dev
2019-06-13 01:19:43 869526256865-deployments 2020-06-16 23:07:06 -dev-video-1in
2020-06-16 17:29:01 -cloudformation 2020-06-16 23:07:06 -dev-video-out
2020-04-17 00:45:24 -main 2020-06-16 23:07:06 -staging
2020-04-17 00:45:33 -main-uat 2020-06-16 23:07:06 -staging-video-1in
2019-06-04 04:50:57 L iat-videa=in pA0pA0 ." 23:07:06 ~Sfaglng—v1deo—our

N oy ' 2020-06-16 23:07:06 -video-1in
2019 ?“'ff 04:51:48 -ugt—vt@eo—our 2020-06-16 23:07:06 S iaansnit
2019-05-29 00:40:32 -video-1in 2020-06-16 23:07:06
2019-06-05 02:30:39 -video-out 2019-07 1 04:14:30 -dev
2020-12-09 05:46:01 2020-0¢ ’ 01:50:45
2020-12-03 08:30:01 -uat 2020-06 01:50:46 -uat
2020-12-03 08:27:15 -uat-video-1in 2020-06-17 01:50:46 -uat-video-1in
2020-12-03 ©8:31:29 -uat-video-out 2020-06-17 01:50:46 -uat-video-out
2020-12-07 22:05:36 -video-1in 2020-06-17 01:50:46 -video-in
2020-12-07 22:06:39 -video-out EReESSG 0t o
2020-06-16 20:35:16 -in 2019-06-03 21:39:16 -dev .
2020-06-16 20:35:18 St 2019-06-03 21:39:51 ~dev—vALdeo~Ln
5020-06-16 21:28:26 A deorin 2019-06 21:40:09 -dev-video-out
Rt R 2019-06-06 02:58:19 -db-backups

2020-06-16 21:28:27 -video-out

Case Study

$ aws s3 ls s3:// -db-backups
PRE 2019-06-06/
PRE 2019-06-07/
PRE 2019-06-08/

PRE 2020-12-09/
PRE 2020-12-10/
PRE 2020-12-11/

Case Study

$ aws s3 ls s3:// -db-backups $ aws s3 ls s3:// -db-backups/2020-12-11/
PRE 2019-06-06/ 2020-12-10 15:00:16 3363808 .sql

PRE 2019-06-07/ 2020-12-10 15:00:16 1027048554 .sql
2020-12-10 15:00:31 25387088 .sql

PRE 2019-06-08/

PRE 2020-12-09/
PRE 2020-12-10/
PRE 2020-12-11/

$ cat .sql

(... omitted ...)

COPY public.users (1id, _1d, privacy_level_1id, user_type_id, _user_1id, ematil,
nickname, _id, password, salt, s _completed,
event_server_connected, event_server_disconnected, created_at, updated_at, deleted_at,
remember_token, _id, signup_status, password_updated_at, disabled) FROM
stdin;

28114 \N +admin@ GCONNZ \N

$2y$10% Bpji
7acf9d8653ce3601431f793669d3c04b4ea0a9278 \N \N \N \N 2014-05-20 16:40:40 2014-08-08
13:48:32 2014-08-08 13:48:32 \N f \N \N \N f

33114N\N +admin@ .com \N

$2y$10% EqCu
54c5090d7e2c67480363Tc03c8ec49da2950fb69 \N \N 2015-08-04 13:46:46 2015-08-04 13:47:00
2014-05-20 16:40:41 2015-08-06 09:12:38 2015-08- 06 09:12:38 \N f \N \N \N f

1630 42 1 4 \N +admin@ .com \N

$2y$10$ kwMC
cef35dbc24de2100149220661f7d3804202b228b4 \N \N 2016-05-13 14:45:28 2016-05-13 15:40:24
2016-03-17 14:20:43 2017-03-15 09:28:31 2017-03- 15 09:28:31 \N f \N \N \N f

. omitted ...

Case Study

File Upload Request O —
(1) i CE=
¢ O —-
— Return AWS Credentials
N APRICELIGR N Backend Server

Case Study

Any user of the web application who had access to the upload
functionality had access to all the database backups from this company

OWASP TOP 10 - Cryptographic Failures

BN

OWASP TOP 10 - Cryptographic Failures

Sensitive Data Exposure -> Cryptographic Failures

OWASP TOP 10 - Cryptographic Failures

Sensitive Data Exposure -> Cryptographic Failures

Moved up from #3 from 2017 -> #2 in 2021

OWASP TOP 10 - Cryptographic Failures

o__

= = File Upload Request
> o p——
(1) |
% o—-

Web Application Return AWS Credentials

N Backend Server

SR Authenticate &
Upload

Web Appl|cat|on AWS S3

OWASP TOP 10 - Cryptographic Failures

o

— File Upload Request T
> O ——
(1) | —
% O—-

T Return AWS Credentials
e Application N Backend Server

- Authenticate &
(2) Upload

Web Application L

What should we do?

BN

What should we do?

We want:

What should we do?

We want:

Uploading directly from the client front end

What should we do?

We want:

Uploading directly from the client front end

But the client shouldn't have access to the credentials!

What should we do?

We want:
Uploading directly from the client front end

But the client shouldn't have access to the credentials!

How can the client upload without credentials?

What should we do?

AWS Pre-signed URL!

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Pre-signed URLs

Grant temporary restricted access to objects in AWS S3 buckets for a predefined
time period.

An AWS user will specifying the object they want to allow access to, the action
(HTTP GET or HTTP PUT), and use their secret key to sign the URL.

Anyone with access to it can perform the action embedded in the URL as if they
were the original signing user.

New Upload Approach

BN

New Upload Approach

Two step process:

New Upload Approach

Two step process:

1. Obtain a pre-signed URL from the backend

New Upload Approach

Two step process:

1. Obtain a pre-signed URL from the backend
2. Use the pre-signed URL to upload the object

New Upload Approach

File Upload Request O —
() =
4 0 ——
—— Return Pre-signed URL
ek Applicatior & Backend Server

Check signature
Pre- 5|gned URL & Store if valid

Web Appllcatlon AWS S3

Creating Pre-signed URL in Python

BN

Creating Pre-signed URL in Python

import boto3

53 client =
boto3.client(
L
aws_access_key_1d=AKIA4NXVWUFCTQVU46ZS,
region_name=ap-southeast-2,
aws_secret_access_key=6x3nDEkwAI5m2ee915gIlelWB+rHw8op0On5Qx2pnB,
config=Config(signature_version='s3v4'))

presigned_url =
s3_client.generate_presigned_ur1(
‘put_object',
Params={"Bucket": "test-bucket-123", "Key": "image.jpg"},
ExpiresIn=1000)

Pre-signed URL

https: -bucke ap-5

?X-Amz- Algortthm AWS4 HMAC SHA256
&X-Amz-Credenti1al=AKIANXTQ6FVWU4UCV4ZS/20201217/ap-southeast-
2/s3/aws4_request

&X-Amz-Date=20201217T203752Z

&X-Amz-SignedHeaders=host

&X-Amz-Expires=7200
&X-Amz-Signature=a84af4b4d786ae759ece86d53453a7edlad33d61b882aec7c4da
c9600eeb2d2

Securing Pre-signed URLs

Like with everything - they need to be implemented securely!

Securing Pre-signed URLs

1. Limiting expiry time

Securing Pre-signed URLs

1. Limiting expiry time

Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

Securing Pre-signed URLs

1. Limiting expiry time

Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

The default pre-signed URL expiration time is 15 minutes.

Securing Pre-signed URLs

1. Limiting expiry time

Once the presigned URL is generated, it will be valid for an unlimited amount of
times before it expires.

The default pre-signed URL expiration time is 15 minutes.

Keep it to the minimum possible.

Securing Pre-signed URLs

2. Least Privilege

Securing Pre-signed URLs

2. Least Privilege

Create a separate IAM role in AWS that has the least amount of privilege.

Securing Pre-signed URLs

2. Least Privilege

Create a separate IAM role in AWS that has the least amount of privilege.

Only grant the necessary permissions (e.g. read object, put object)

Securing Pre-signed URLs

2. Least Privilege

Create a separate IAM role in AWS that has the least amount of privilege.

Only grant the necessary permissions (e.g. read object, put object)

Really good for incident response and revocation

|AM Policy

"Version":"2012-10-17",
"Statement": |
{
"Effect":"Allow",
"Action": [
"s3:PutObject",
"s3:GetObject"

1,

"Resource":"arn:aws:s3:::test-bucket-123"

Securing Pre-signed URLs

3. Control File Content

Securing Pre-signed URLs

3. Control File Content

Once a pre-signed URL is generated, normally you don't have control over who can
upload a file or what file is uploaded.

Securing Pre-signed URLs

3. Control File Content

Once a pre-signed URL is generated, normally you don't have control over who can
upload a file or what file is uploaded.

Specify the Content-MD5 header while generating the pre-signed URL with the
hash of the file being uploaded.

Securing Pre-signed URLs

3. Control File Content

Once a pre-signed URL is generated, normally you don't have control over who can
upload a file or what file is uploaded.

Specify the Content-MD5 header while generating the pre-signed URL with the
hash of the file being uploaded.

Enforce the presigned URL to be valid only if the specified value for this header is
the same from the one specified, and the one received by the
user while uploading a file.

Securing Pre-signed URLs

4. Enable Logging

Securing Pre-signed URLs

4. Enable Logging

This applies even if you don't use pre-signed URL.

Securing Pre-signed URLs

4. Enable Logging

This applies even if you don't use pre-signed URL.

Server access logging provides detailed records for the requests that are made to
a bucket.

Securing Pre-signed URLs

4. Enable Logging

This applies even if you don't use pre-signed URL.

Server access logging provides detailed records for the requests that are made to
a bucket.

Not enabled by default.

Securing Pre-signed URLs

Limiting expiry time
Least Privilege
Control File Content
Enable Logging

ol

Takeaway

Remember: everything that you send to the front end
client is visible to the end user

Every time when you are working with any type of
credentials - think really carefully about where it's stored! ({ \ \

Thank you!

email: helen.jiahe.huang@gmail.com

linkedin: www.linkedin.com/in/helen-jiahe-huang/

twitter: @__helenhuang

