
CONFIDENTIAL

CONFIDENTIAL CyberCX - CONFIDENTIAL

When Twiddling The Dials
Go Wrong

8 July, 2022

Shofe Miraz

Shofe Miraz

Thank You to Our Sponsors and Hosts!

Without them, OWASP New Zealand Day couldn’t happen

CONFIDENTIAL

CONFIDENTIAL

Who is this guy?

• Shofe Miraz @shmi012

• Security Consultant at CyberCX

• Working in cyber security for 3 years

• I like playing cricket, photography and presenting.

• You may recognize me from..
HackAndLearn monthly meetup.

CONFIDENTIAL

CONFIDENTIAL

Why this talk?

CONFIDENTIAL

CONFIDENTIAL

• Non-Standard Configurations

Today’s Agenda

• Some Interesting Bugs

• Deep Dive

• What Went Wrong

▪ Takeaways

CONFIDENTIAL

CONFIDENTIAL

First Scenario

In Short..

• Developers opted to use non-Laravel functionalities.

• Use of a dangerous PHP function.

• Lack of user’s input sanitization.

• Any authenticated users can issue arbitrary requests.

• Remote command injection on the server.

CONFIDENTIAL

CONFIDENTIAL

Exploring Application’s Functions..

• Authenticated users can create posts.

• Ability to upload and remove attachments

• Files get stored in their cloud storage

• Further inspection to the remove attachment request..

• HTTP DELETE method used – Interesting..

CONFIDENTIAL

CONFIDENTIAL

Interesting..

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: …

Accept: application/json

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/json

{

"file_key":“media-results/random.php",

"media_reference":"12345"}

CONFIDENTIAL

CONFIDENTIAL

There’s an issue here.. Can you guess?

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0)

Accept: application/json

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/json

{

"file_key":“media-results/random.php",

"media_reference":"12345"}

CONFIDENTIAL

CONFIDENTIAL

Let’s look at the code

private function deleteFromObjectStorage(string $fileKey): ?int

{

$url = $this->uploadService->makePresignedUploadUrl(

$fileKey,

config('app.s3.bucket')

);

$appFolder = dirname(dirname(__DIR__)) . '/';

exec($appFolder . 'os-token.sh');

$osToken = rtrim(file_get_contents($appFolder . 'os.token’));

$cmd = 'curl -i -X DELETE -H "X-Auth-Token: ' . $osToken . '" ' . $url;

$shell = shell_exec($cmd);

CONFIDENTIAL

CONFIDENTIAL

Inject Commands!

Request

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: Mozilla/5.0….

Accept: application/json

Accept-Encoding: gzip, deflate

Content-Type: application/json

{"file_key":"$(bash -c 'whoami')",

"media_reference":"12345"}

What gets executed

curl -i -X DELETE -H "X-Auth-Token: [redacted]" https://hostname/$(bash -c 'whoami')

Response

CONFIDENTIAL

CONFIDENTIAL

!! Shell !!

CONFIDENTIAL

CONFIDENTIAL

Scenario 2

• A non-standard configuration from the client.

• Lack of user’s authorization checking in Umbraco.

• Led to resetting any user's password.

• Administrator account takeover.

CONFIDENTIAL

CONFIDENTIAL

Something Interesting.

• Client provided few test accounts across multiple privilege

levels.

• Observed a non-standard configuration.

Custom User GroupDefault User Groups

CONFIDENTIAL

CONFIDENTIAL

• Umbraco uses userId to track users' activity

• Possible to access another user’s profile?

• Started looking at other potential endpoints

Use of ID params..

CONFIDENTIAL

CONFIDENTIAL

That didn’t work

Of course! This works

Accessing unauthorized resources

CONFIDENTIAL

CONFIDENTIAL

A bug?

• The user with User Manager role can add users.

• Can only add non-admin users.. At least that’s what it seems like.

Can assign role on the fly!

CONFIDENTIAL

CONFIDENTIAL

User Created Successfully

CONFIDENTIAL

CONFIDENTIAL

Could it be
that easy?

CONFIDENTIAL

CONFIDENTIAL

What more can we do?

• Password change for users.

• The request also has a userId parameter..

• Voila! Super Admin User account takeover!

CONFIDENTIAL

CONFIDENTIAL

Authorization Checks

CONFIDENTIAL

CONFIDENTIAL

Authorization Checks

CONFIDENTIAL

CONFIDENTIAL

No Authorization Checks Performed!

Missing Authorization Check

CONFIDENTIAL

CONFIDENTIAL

DEMO

CONFIDENTIAL

CONFIDENTIAL

What went wrong?

Scenario 1 – Laravel

• Coding practices not using secure design patterns

• Lack of user input validation

• Use of a dangerous PHP function shell_exec() whereas

safer alternative could be used.

e.g - escapeshellcmd(), escapeshellarg()

Scenario 2 – Umbraco

• A custom user group with shallow privilege separation

• Multiple ways of checking user rights

• Combined with the underlying Umbraco’s Broken Access Control bug

• Resulting in website takeover

CONFIDENTIAL

CONFIDENTIAL

Takeaways

• It might be easier or save time to do things

differently, however..

• If unsure, follow framework-specific guidelines.

• Have a process to check for non-standard configuration

before deploying to PROD.

• Avoid making assumptions about how things work.

Especially while dealing with user privilege.

CONFIDENTIAL

CONFIDENTIAL

Thank you for listening
You can reach out to me @shmi012

