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Thank You to Our Sponsors and Hosts!

Without them, OWASP New Zealand Day couldn’t happen
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Who is this guy?

• Shofe Miraz @shmi012

• Security Consultant at CyberCX

• Working in cyber security for 3 years

• I like playing cricket, photography and presenting.

• You may recognize me from..
HackAndLearn monthly meetup.
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Why this talk?
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• Non-Standard Configurations

Today’s Agenda

• Some Interesting Bugs

• Deep Dive

• What Went Wrong

▪ Takeaways
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First Scenario

In Short..

• Developers opted to use non-Laravel functionalities.

• Use of a dangerous PHP function.

• Lack of user’s input sanitization.

• Any authenticated users can issue arbitrary requests.

• Remote command injection on the server.
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Exploring Application’s Functions..

• Authenticated users can create posts.

• Ability to upload and remove attachments

• Files get stored in their cloud storage

• Further inspection to the remove attachment request..

• HTTP DELETE method used – Interesting..
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Interesting..

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: …

Accept: application/json

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/json

{

"file_key":“media-results/random.php",

"media_reference":"12345"}
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There’s an issue here.. Can you guess?

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) 

Accept: application/json

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/json

{

"file_key":“media-results/random.php",

"media_reference":"12345"}
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Let’s look at the code

private function deleteFromObjectStorage(string $fileKey): ?int

{

$url = $this->uploadService->makePresignedUploadUrl(

$fileKey,

config('app.s3.bucket')

);

$appFolder = dirname(dirname(__DIR__)) . '/';

exec($appFolder . 'os-token.sh');

$osToken = rtrim(file_get_contents($appFolder . 'os.token’));

$cmd = 'curl -i -X DELETE -H "X-Auth-Token: ' . $osToken . '" ' . $url; 

$shell = shell_exec($cmd);  
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Inject Commands!

Request

DELETE /api/results/media/12345 HTTP/1.1

Host: hostname

User-Agent: Mozilla/5.0….

Accept: application/json

Accept-Encoding: gzip, deflate

Content-Type: application/json

{"file_key":"$(bash -c 'whoami')",

"media_reference":"12345"}

What gets executed

curl -i -X DELETE -H "X-Auth-Token: [redacted]" https://hostname/$(bash -c 'whoami')

Response
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!! Shell !!



CONFIDENTIAL

CONFIDENTIAL

Scenario 2

• A non-standard configuration from the client.

• Lack of user’s authorization checking in Umbraco.

• Led to resetting any user's password.

• Administrator account takeover.



CONFIDENTIAL

CONFIDENTIAL

Something Interesting.

• Client provided few test accounts across multiple privilege 

levels.

• Observed a non-standard configuration.

Custom User GroupDefault User Groups
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• Umbraco uses userId to track users' activity

• Possible to access another user’s profile?

• Started looking at other potential endpoints

Use of ID params..
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That didn’t work

Of course! This works

Accessing unauthorized resources
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A bug?

• The user with User Manager role can add users.

• Can only add non-admin users.. At least that’s what it seems like.

Can assign role on the fly!
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User Created Successfully



CONFIDENTIAL

CONFIDENTIAL

Could it be 
that easy?
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What more can we do?

• Password change for users.

• The request also has a userId parameter..

• Voila! Super Admin User account takeover!
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Authorization Checks
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Authorization Checks
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No Authorization Checks Performed!

Missing Authorization Check
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DEMO
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What went wrong?

Scenario 1 – Laravel

• Coding practices not using secure design patterns

• Lack of user input validation

• Use of a dangerous PHP function shell_exec() whereas 

safer alternative could be used.

e.g - escapeshellcmd(), escapeshellarg()

Scenario 2 – Umbraco

• A custom user group with shallow privilege separation

• Multiple ways of checking user rights

• Combined with the underlying Umbraco’s Broken Access Control bug

• Resulting in website takeover
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Takeaways

• It might be easier or save time to do things 

differently, however..

• If unsure, follow framework-specific guidelines.

• Have a process to check for non-standard configuration 

before deploying to PROD.

• Avoid making assumptions about how things work. 

Especially while dealing with user privilege.
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Thank you for listening
You can reach out to me @shmi012


