
Securing REST API Endpoints Against Data Leaks

Securing REST API Endpoints
(Against Data Leaks)
Or, How to Avoid Another ‘Optus’

Thank You to Our Sponsors and Hosts!
Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen.

Securing REST API Endpoints Against Data Leaks

Who Am I?

• Security-interested software developer (these days)

• Worked at Cosive as Security Developer from 2021 to last month
• Currently in the market for my next role

• PhD in Computer Science from University of Auckland

• Also have a BCom(Hons), spent years working in financial admin

• Overly active on InfosecNZ Discord

• Excessively reference The Simpsons

Securing REST API Endpoints Against Data Leaks

Introduction

• Focus here is specifically on preventing sensitive data from
leaking out via API endpoints
• E.g., customer or employee Personally Identifiable Information

• Limited to REST APIs/web apps only (no GraphQL, gRPC, etc.)
• Most of it should still apply to other approaches

• Talk is not a dig at Optus—let’s learn from others’ mishaps and
avoid our own data leaks!

Securing REST API Endpoints Against Data Leaks

Background

Securing REST API Endpoints Against Data Leaks

Optus Breached

• In September 2022, news came out that someone was
attempting to extort major Australian telco Optus via The Dark
Web™

• Claimed to have 10 million customer records scraped from
Optus systems

• That’s roughly 40% of the entire population of Australia…

• Leaked a 10,000-record subset as proof

Securing REST API Endpoints Against Data Leaks

Not-so-sophisticated Attack

• Optus CEO said it was a “very sophisticated cyber attack”.

• Australian Minister for Home Affairs Clare O’Neil was asked in a TV
interview “You … don't seem to [agree] that this was a sophisticated
attack?”

• The Minister responded “Well, it wasn't. So, no.”

• The attacker apparently found an API endpoint returning customer
data with no authentication requirements

Securing REST API Endpoints Against Data Leaks

Lucky Country

• Intense media and government focus apparently spooked the
perpetrator

• Perp took down all records and (sort of) apologised
• Claimed no security.txt, couldn’t report vuln

• MediBank breach shortly after took focus away from Optus

• Reputational damage, ministerial derision and credit monitoring
offers etc. all mean this was probably very expensive for Optus

Securing REST API Endpoints Against Data Leaks

Maybe not the Brightest Idea

• While this was going on, somebody started sending text
messages to people from the breach

• Threatened to expose private information if no ransom paid

• Turned out to be a Sydney teenager with no connection to the
original scraping

• Sent extortion threats to phone numbers from the leaked 10,000…
Using his personal cell phone.

• Further trouble for Optus!

Securing REST API Endpoints Against Data Leaks

Some Thoughts

Securing REST API Endpoints Against Data Leaks

How Did This Happen?

• No inside knowledge, but best my guess…

• Someone turned off authentication for an endpoint during
testing, and forgot to turn it back on

• Suggests organisational/structural failure
• No relevant policies, or policies unenforced

• Nobody looking for issues/blocking bad changes

Securing REST API Endpoints Against Data Leaks

Let’s (Not) Play The Blame Game

• “Which idiot is to blame for this?”
“Some stupid dev didn’t do their job!”
“The reviewer should have caught it.”

• It should be very difficult for one dev to be wholly responsible.

• Implies broader organisational failings.

• Investigate the process leading to the failure, don’t search for a
scapegoat.

Securing REST API Endpoints Against Data Leaks

Defensive Measures
10 not-so-weird tricks hackers don’t want you to know!

Securing REST API Endpoints Against Data Leaks

Deny by Default

• Always deny access by default.

• All unauthenticated access must be marked explicitly in code.
• Makes it obvious if something is broadly accessible.

• All unauthenticated requests get a 401 HTTP response
• Only exceptions are for login endpoints & related.

• “Fail secure”

Securing REST API Endpoints Against Data Leaks

To Reiterate

• Always deny by default!

• If you remember one thing from this talk, make it that

• Stops vast majority of unsophisticated attacks

• Frustrates more sophisticated attackers

• If you’re too hard to crack, they’ll probably look elsewhere

Securing REST API Endpoints Against Data Leaks

Code Reviews

• Well, duh! (hopefully)

• Reviewers should question exposed endpoints
• (works great with ‘deny by default’)

• Try to ensure reviewers understand broader context
• Unintended changes resulting from intended ones?

• Reviewer approval(s) mandatory

• Maybe security-focused checklists or full security reviews

Securing REST API Endpoints Against Data Leaks

Ban Changes in Production

• Evades code review/approval processes
• Prefer CI/CD
• Only deploy from protected branches

• Fixes often don’t get propagated

• People forget to revert temporary changes

• No guarantee someone malicious doesn’t look at that moment!

• Probably only in dynamic languages, but still a big problem

Securing REST API Endpoints Against Data Leaks

Control Validation Testing

• You already have lots of automated testing, right?

• Including integration & end-to-end tests?

• Just send requests to your test system and check responses
• Unauthenticated gets 401, unauthorised gets 403, etc.

• DAST, Postman/Insomnia etc. support this

• Probably CLI tooling to do it (cURL + shell script?)

Securing REST API Endpoints Against Data Leaks

External Monitoring

• Periodic control validation testing in production

• Double-check bad changes didn’t sneak into prod

• Attempt access via the same approach as an external user

• Keep log of attempts, alert when result changes

• Monitoring should self-identify, but don’t treat it differently

Securing REST API Endpoints Against Data Leaks

Rate Limiting

• Optus leaked possibly 10 million records

• 1 record per second ≈ 16.5 weeks of requests
• ∴ Optus’ endpoint not heavily rate limited

• All good web frameworks should have for support it

• Not always possible, but could be difference between 10,000 &
10,000,000 leaked records

• Make exceptions for certain users if needed

Securing REST API Endpoints Against Data Leaks

IP Address Allowlisting

• If users will only access from fixed origins, then only permit
those origins to connect

• E.g., specific corporate networks, behind fixed IP address(es)

• Works great when different instances for different customers

• VPNs for internal-only systems (but here be dragons)

• Obviously, not always possible

Securing REST API Endpoints Against Data Leaks

OpenAPI/Swagger

• Produces a detailed listing of all endpoints

• Includes authentication requirements

• Helps make auth gaps obvious to API users
• Ensure they can report such issues to you!

• No guarantee, but it can help
• Enough eyeballs make shallow bugs, etc.

Securing REST API Endpoints Against Data Leaks

Security Training for Developers

• Lots of devs are self-taught these days

• Even people with CS/SE degrees don’t learn about security

• Security issues can be ‘unknown-unknowns’
• Those are the most dangerous type

• Devs learn to spot possible problems and ask for help

• A little (awareness) training can go a long way

Securing REST API Endpoints Against Data Leaks

Penetration Tests

• Good pentesters know the ‘low-hanging fruit’
• Raise the bar up to genuinely sophisticated attacks

• Will probably find incorrectly exposed endpoints
• (assuming they’re in scope)

• Expensive, maybe only useful with (almost-)mature software

• Make sure you fix the underlying cause, not just the symptom!

Securing REST API Endpoints Against Data Leaks

Test vs Production

Securing REST API Endpoints Against Data Leaks

Test Environment, Production Data

• There were eventual suggestions that Optus’ leaky API endpoint
was on a test environment

• Using production data source(s), however

• Maybe: “It’s just a test environment, we don’t need to worry
about securing it”

• Result: Customers’ PII walks out the door. Bad time for all.

Securing REST API Endpoints Against Data Leaks

It’s Production, Unless it’s Definitely Test

• Rare not to need to worry about securing environments. Only when:
• No sensitive data involved.

• Environment unused/inaccessible by world outside testing

• No ability for changes and updates made inside the environment to

propagate out of it (& reset state every so often).

• If anybody not directly involved in testing will notice if it disappears,
it’s not a testing environment.

• If it’s not a testing environment, all normal security measures are
mandatory!

Securing REST API Endpoints Against Data Leaks

Play It Safe

When in doubt:

Treat it like it’s a production environment!

Securing REST API Endpoints Against Data Leaks

Summary

Securing REST API Endpoints Against Data Leaks

Pop Goes The Telco

• In September 2022, data of millions(?) of Optus customers was
accessed by an outsider

• Apparently scraped from a REST API endpoint with no auth req.

• Optus was lucky: most data not leaked by perpetrator
• (and the even-worse MediBank hack distracted people)

• Still serious costs in money and reputation

Securing REST API Endpoints Against Data Leaks

Do Fix Problems, Don’t Point Fingers

• Probably happened because a developer made a mistake

• Should be very difficult for that lone mistake to cause this

• Suggests larger organisational/structural issues

• Probable gaps in processes, procedures, policies or enforcement

• Blame management (if anyone), not some intern

Securing REST API Endpoints Against Data Leaks

Many Defences → Light Breaches

• No single silver bullet to stop all potential breaches

• Defence-in-depth/“Swiss cheese model”

• The more the better (usually)

• Mostly have minimal impact on performance, etc.

• Some measures technical, some cultural/structural
• ‘Implemented’ by different people

Securing REST API Endpoints Against Data Leaks

The Top Ten

• Deny by default
• Code reviews
• No changes in production
• Control validation (automated exposure) testing
• External monitoring (‘exposure testing in prod’)
• Rate limiting
• IP address allowlisting & VPNs
• OpenAPI/Swagger
• Security training for developers
• Penetration tests

Securing REST API Endpoints Against Data Leaks

No Leaky Test Environments

• Some suggestion that Optus breach was on test environment

• Test environment connected to production data, however
• (or pre-populated with it)

• Treat test like prod unless 100% sure
• (deny by default strikes again!)

• May relax security if and only if
• No sensitive/customer data
• Changes in it can’t escape
• Nobody outside development & test uses it

Securing REST API Endpoints Against Data Leaks

Just say no!

	Slide 1: Securing REST API Endpoints (Against Data Leaks)
	Slide 2: Thank You to Our Sponsors and Hosts!
	Slide 3: Who Am I?
	Slide 4: Introduction
	Slide 5: Background
	Slide 6: Optus Breached
	Slide 7: Not-so-sophisticated Attack
	Slide 8: Lucky Country
	Slide 9: Maybe not the Brightest Idea
	Slide 10: Some Thoughts
	Slide 11: How Did This Happen?
	Slide 12: Let’s (Not) Play The Blame Game
	Slide 13: Defensive Measures
	Slide 14: Deny by Default
	Slide 15: To Reiterate
	Slide 16: Code Reviews
	Slide 17: Ban Changes in Production
	Slide 18: Control Validation Testing
	Slide 19: External Monitoring
	Slide 20: Rate Limiting
	Slide 21: IP Address Allowlisting
	Slide 22: OpenAPI/Swagger
	Slide 23: Security Training for Developers
	Slide 24: Penetration Tests
	Slide 25: Test vs Production
	Slide 26: Test Environment, Production Data
	Slide 27: It’s Production, Unless it’s Definitely Test
	Slide 28: Play It Safe
	Slide 29: Summary
	Slide 30: Pop Goes The Telco
	Slide 31: Do Fix Problems, Don’t Point Fingers
	Slide 32: Many Defences → Light Breaches
	Slide 33: The Top Ten
	Slide 34: No Leaky Test Environments
	Slide 35: Just say no!

