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Who Am I?

• Security-interested software developer (these days)

• Worked at Cosive as Security Developer from 2021 to last month
• Currently in the market for my next role 

• PhD in Computer Science from University of Auckland

• Also have a BCom(Hons), spent years working in financial admin

• Overly active on InfosecNZ Discord

• Excessively reference The Simpsons
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Introduction

• Focus here is specifically on preventing sensitive data from 
leaking out via API endpoints
• E.g., customer or employee Personally Identifiable Information

• Limited to REST APIs/web apps only (no GraphQL, gRPC, etc.)
• Most of it should still apply to other approaches

• Talk is not a dig at Optus—let’s learn from others’ mishaps and 
avoid our own data leaks!
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Background
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Optus Breached

• In September 2022, news came out that someone was 
attempting to extort major Australian telco Optus via The Dark 
Web™

• Claimed to have 10 million customer records scraped from 
Optus systems

• That’s roughly 40% of the entire population of Australia…

• Leaked a 10,000-record subset as proof
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Not-so-sophisticated Attack

• Optus CEO said it was a “very sophisticated cyber attack”.

• Australian Minister for Home Affairs Clare O’Neil was asked in a TV 
interview “You … don't seem to [agree] that this was a sophisticated 
attack?”

• The Minister responded “Well, it wasn't. So, no.”

• The attacker apparently found an API endpoint returning customer 
data with no authentication requirements
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Lucky Country

• Intense media and government focus apparently spooked the 
perpetrator

• Perp took down all records and (sort of) apologised
• Claimed no security.txt, couldn’t report vuln

• MediBank breach shortly after took focus away from Optus

• Reputational damage, ministerial derision and credit monitoring 
offers etc. all mean this was probably very expensive for Optus
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Maybe not the Brightest Idea

• While this was going on, somebody started sending text 
messages to people from the breach

• Threatened to expose private information if no ransom paid

• Turned out to be a Sydney teenager with no connection to the 
original scraping

• Sent extortion threats to phone numbers from the leaked 10,000…  
Using his personal cell phone.

• Further trouble for Optus!
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Some Thoughts
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How Did This Happen?

• No inside knowledge, but best my guess…

• Someone turned off authentication for an endpoint during 
testing, and forgot to turn it back on

• Suggests organisational/structural failure
• No relevant policies, or policies unenforced

• Nobody looking for issues/blocking bad changes
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Let’s (Not) Play The Blame Game

• “Which idiot is to blame for this?”
“Some stupid dev didn’t do their job!”
“The reviewer should have caught it.”

• It should be very difficult for one dev to be wholly responsible.

• Implies broader organisational failings.

• Investigate the process leading to the failure, don’t search for a 
scapegoat.
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Defensive Measures
10 not-so-weird tricks hackers don’t want you to know!
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Deny by Default

• Always deny access by default.

• All unauthenticated access must be marked explicitly in code.
• Makes it obvious if something is broadly accessible.

• All unauthenticated requests get a 401 HTTP response
• Only exceptions are for login endpoints & related.

• “Fail secure”
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To Reiterate

• Always deny by default!

• If you remember one thing from this talk, make it that

• Stops vast majority of unsophisticated attacks

• Frustrates more sophisticated attackers

• If you’re too hard to crack, they’ll probably look elsewhere
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Code Reviews

• Well, duh! (hopefully)

• Reviewers should question exposed endpoints
• (works great with ‘deny by default’)

• Try to ensure reviewers understand broader context
• Unintended changes resulting from intended ones?

• Reviewer approval(s) mandatory

• Maybe security-focused checklists or full security reviews
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Ban Changes in Production

• Evades code review/approval processes
• Prefer CI/CD
• Only deploy from protected branches

• Fixes often don’t get propagated

• People forget to revert temporary changes

• No guarantee someone malicious doesn’t look at that moment!

• Probably only in dynamic languages, but still a big problem
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Control Validation Testing

• You already have lots of automated testing, right?

• Including integration & end-to-end tests?

• Just send requests to your test system and check responses
• Unauthenticated gets 401, unauthorised gets 403, etc.

• DAST, Postman/Insomnia etc. support this

• Probably CLI tooling to do it (cURL + shell script?)
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External Monitoring

• Periodic control validation testing in production

• Double-check bad changes didn’t sneak into prod

• Attempt access via the same approach as an external user

• Keep log of attempts, alert when result changes

• Monitoring should self-identify, but don’t treat it differently
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Rate Limiting

• Optus leaked possibly 10 million records

• 1 record per second ≈ 16.5 weeks of requests
• ∴ Optus’ endpoint not heavily rate limited

• All good web frameworks should have for support it

• Not always possible, but could be difference between 10,000 & 
10,000,000 leaked records

• Make exceptions for certain users if needed
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IP Address Allowlisting

• If users will only access from fixed origins, then only permit 
those origins to connect

• E.g., specific corporate networks, behind fixed IP address(es)

• Works great when different instances for different customers

• VPNs for internal-only systems (but here be dragons)

• Obviously, not always possible
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OpenAPI/Swagger

• Produces a detailed listing of all endpoints

• Includes authentication requirements

• Helps make auth gaps obvious to API users
• Ensure they can report such issues to you!

• No guarantee, but it can help
• Enough eyeballs make shallow bugs, etc.
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Security Training for Developers

• Lots of devs are self-taught these days

• Even people with CS/SE degrees don’t learn about security

• Security issues can be ‘unknown-unknowns’
• Those are the most dangerous type

• Devs learn to spot possible problems and ask for help

• A little (awareness) training can go a long way
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Penetration Tests

• Good pentesters know the ‘low-hanging fruit’
• Raise the bar up to genuinely sophisticated attacks

• Will probably find incorrectly exposed endpoints
• (assuming they’re in scope)

• Expensive, maybe only useful with (almost-)mature software

• Make sure you fix the underlying cause, not just the symptom!
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Test vs Production
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Test Environment, Production Data

• There were eventual suggestions that Optus’ leaky API endpoint 
was on a test environment

• Using production data source(s), however

• Maybe:  “It’s just a test environment, we don’t need to worry 
about securing it”

• Result:  Customers’ PII walks out the door.  Bad time for all.
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It’s Production, Unless it’s Definitely Test

• Rare not to need to worry about securing environments.  Only when:
• No sensitive data involved.

• Environment unused/inaccessible by world outside testing

• No ability for changes and updates made inside the environment to 

propagate out of it (& reset state every so often).

• If anybody not directly involved in testing will notice if it disappears, 
it’s not a testing environment.

• If it’s not a testing environment, all normal security measures are 
mandatory!
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Play It Safe

When in doubt:

Treat it like it’s a production environment!
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Summary
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Pop Goes The Telco

• In September 2022, data of millions(?) of Optus customers was 
accessed by an outsider

• Apparently scraped from a REST API endpoint with no auth req.

• Optus was lucky: most data not leaked by perpetrator
• (and the even-worse MediBank hack distracted people)

• Still serious costs in money and reputation
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Do Fix Problems, Don’t Point Fingers

• Probably happened because a developer made a mistake

• Should be very difficult for that lone mistake to cause this

• Suggests larger organisational/structural issues

• Probable gaps in processes, procedures, policies or enforcement

• Blame management (if anyone), not some intern
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Many Defences → Light Breaches

• No single silver bullet to stop all potential breaches

• Defence-in-depth/“Swiss cheese model”

• The more the better (usually)

• Mostly have minimal impact on performance, etc.

• Some measures technical, some cultural/structural
• ‘Implemented’ by different people
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The Top Ten

• Deny by default
• Code reviews
• No changes in production
• Control validation (automated exposure) testing
• External monitoring (‘exposure testing in prod’)
• Rate limiting
• IP address allowlisting & VPNs
• OpenAPI/Swagger
• Security training for developers
• Penetration tests
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No Leaky Test Environments

• Some suggestion that Optus breach was on test environment

• Test environment connected to production data, however
• (or pre-populated with it)

• Treat test like prod unless 100% sure
• (deny by default strikes again!)

• May relax security if and only if
• No sensitive/customer data
• Changes in it can’t escape
• Nobody outside development & test uses it
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Just say no!


	Slide 1: Securing REST API Endpoints (Against Data Leaks)
	Slide 2: Thank You to Our Sponsors and Hosts!
	Slide 3: Who Am I?
	Slide 4: Introduction
	Slide 5: Background
	Slide 6: Optus Breached
	Slide 7: Not-so-sophisticated Attack
	Slide 8: Lucky Country
	Slide 9: Maybe not the Brightest Idea
	Slide 10: Some Thoughts
	Slide 11: How Did This Happen?
	Slide 12: Let’s (Not) Play The Blame Game
	Slide 13: Defensive Measures
	Slide 14: Deny by Default
	Slide 15: To Reiterate
	Slide 16: Code Reviews
	Slide 17: Ban Changes in Production
	Slide 18: Control Validation Testing
	Slide 19: External Monitoring
	Slide 20: Rate Limiting
	Slide 21: IP Address Allowlisting
	Slide 22: OpenAPI/Swagger
	Slide 23: Security Training for Developers
	Slide 24: Penetration Tests
	Slide 25: Test vs Production
	Slide 26: Test Environment, Production Data
	Slide 27: It’s Production, Unless it’s Definitely Test
	Slide 28: Play It Safe
	Slide 29: Summary
	Slide 30: Pop Goes The Telco
	Slide 31: Do Fix Problems, Don’t Point Fingers
	Slide 32: Many Defences → Light Breaches
	Slide 33: The Top Ten
	Slide 34: No Leaky Test Environments
	Slide 35: Just say no!

