OWASP NZ 2023 —
What Could Possibly Go
Wrong in a K8s Cluster?

IIIIIIIII

222222222

Thank You to Our Sponsors and Hosts!

@DEFEND faslzly
M IrNusRIsi«

|CyberCX ¥ tesserent

QUANTUM

SECURITY

SSSSSSSSSSSSSSS

SN 2 advisory

- Booklover

- Collector

- Self-learner

- OSCP, CRT, CKA, CKS

LinkedIn:

https://www.linkedin.com/in/w-

Xor/

Security Consultant @ WithSecure Singapore

https://www.linkedin.com/in/w-xor/
https://www.linkedin.com/in/w-xor/

Agenda

="Background

*Components within a K8s Cluster

*What Could Possibly Go Wrong?

What is Kubernetes?

“It means Helmsman or “kuBepvitng” in Greek

=Containers Orchestrator p=. | nn"-l- Kan —_
"WHAT KUBERNETES'IS

\
:

AN

M‘

-
.

- B .
\‘ N
\ 3 W
» 4
) F N\ A= -
. ! \ b el ,
rogrammerHumor.io

if 3
it A

Cluster
Worker Plane
Worker Node 1

Kubernetes

Coaertrine -\ Cluster
Kubelet ETCD Scheduler Controller Manager

Networking

Cluster
Worker Plane
Worker Node 1

Kubernetes

[Containe Runtime | Aprserver
N Cluster

Kubelet ETCD Scheduler Controller Manager

i
B\

Networking

Worker Plane
Worker Node 1

Kubernetes
Cluster

[Container Runtime ‘

Kubelet

Cluster
Management Plane

API Server

1

Scheduler Controller Manager

Networking

Cluster
Worker Plane
Worker Node 1

Kubernetes

Management Plane C‘ u Ste r
[Container Runtime ’ API Server

ETCD Scheduler Controller Manager

Networking

makeameme.org

Networking

Networking

=Everything communicates via REST API

=Flat network

*No transport level encryption by default

Possible Entry
Points From

sesemer -
N The Outside

Networking

=(Un)authorised access to kubelet - /exec, /pods

=Privileged pods on the hunt
*RCE to the pods

=Privileged Service Account token

*Move laterally

Cluster

frontend-Stage

Staging

backend-Stage

database-Stage

©
®

frontend-Prod

Production
lbackend-Prod|

database-Prod

Flat Network

Cluster

Staging
frontend-Stage database-Stage

Production

| T RTRTRRRRUURRRI . frontend-Prod backend-Prod

backend-Stage
. g S S—— .. database-Prod

. . FPTT EEETETTY
. .
. .
0
.
." *
e - R - . .
. .
msmbmammas .
.
.
........

Flat Network

Flat Network

Cluster

Staging

frontend-Stage

"
e

ba kend Stage

database:Stage

Production

frontend-Prod

.
)

.
.

*..__backeng-Prod

& data basé-Prod

Network Policy

No worries! Network policy comes to our
rescue!

Network Policy

=Can be defined through YAML manifest

=2 types of policies: Ingress & Egress

*"Enforce access controls based on several conditions
= |P addresses

= Namespace’s label
= Pod’s label
= Port

Network Policy

This should be stopping the “frontend” pods from accessing
the “database” pods in Production. Now it should be secure...
Right?

Common Misconfigurations

=Lack of network policies

=Network policies not being accurate / fine-grained

RBAC — High-level Concept

~ .\
Role / RoleBinding /
ClusterRole ClusterRolebinding

RBAC — High-level Concept

Principal

SERVICE
ACCOUNT

EXTERNAL
USER

J J

el RBAC—High-level
Concept

Role binding to a specific user / SA

RBAC — High-level
Concept

Role binding to a group of users / SAs

Common Misconfigurations

=Use of Wildcard

=Qverly provisioned groups

=Cluster Role == Role

: rbac.authorization.k8s.io/v:

Use of Wildcard

=*Does one really need all permissions?

rbac.authorization.k8s.1i0/v:
: ClusterRoleBinding

: rbac.authorization.k8s.ic

Overly Provisioned
groups

=*Do all SAs require the same permission?

: rbac.authorization.k8s.io/v:

: ClusterRoleBinding
: pod-reader-binding

: Clusterrole

Cluster Role = Role

*Future-proof

*"For convenience's sake

=*Or sometimes people are just confused...

How to Find Out Overly Provisioned
Principal?

rbac-lookup

SUBJECT SCOPE ROLE

u ra kkess kube-system:attachdetach-controller cluster-wide ClusterRole/system:controller:attachdetach-controller
kube-system:bootstrap-signer kube-public Role/system:controller:bootstrap-signer
kube-system:bootstrap-signer kube-system Role/system:controller:bootstrap-signer
kube-system:calico-kube-controllers cluster-wide ClusterRole/calico-kube-controllers

u rbac—tOOI kube-system:calico-node cluster-wide ClusterRole/calico-node
kube-system:certificate-controller cluster-wide ClusterRole/system:controller:certificate-controller
kube-system:cloud-provider kube-system Role/system:controller:cloud-provider
kube-system:clusterrole-aggregation-controller cluster-wide ClusterRole/system:controller:clusterrole-aggregation-controller

.rbaC—IOO kup kube-system:coredns cluster-wide ClusterRole/system:coredns
kube-system:cronjob-controller cluster-wide ClusterRole/system:controller:cronjob-controller
kube-system:daemon-set-controller cluster-wide ClusterRole/system:controller:daemon-set-controller
kube-system:deployment-controller cluster-wide ClusterRole/system:controller:deployment-controller
kube-system:disruption-controller cluster-wide ClusterRole/system:controller:disruption-controller

~ B T ! P [N ~ v "
rbac-3:rbac-exercise-sa rbac-3 rbac-tool analysis

NAME LIST CREATE UPDATE DELETE We705 16:@8:07.255318 3352736 warnings.go:67] policy/vibetal PodSecurityPolicy is deprecated in v1.21+, unavailable in v1.25+
localsubjectaccessreviews.authorization.k8s.io AnalysisConfigInfo: . .
. . . B Description: Rapid7 InsightCloudSec default RBAC analysis rules
networkpol:_Lc:_Les.crd.pro?ectcallq;o.org Name: InsightCloudSec
networkpolicies.networking.k8s.io Uuid: 9371719c-1031-468c-91ed-576fdc9e9f59
I"IE'EWOI"KSE'ES.CI"U.DTO':le('[CEl].iC0.0Tg CreatedOn: "2023-07-05T16:08:07+08:00"

persistentvolumeclaims Findings:

F : : - Finding:
gggglsrupuonbudgets.pollcv Message: Capture principals that can read secrets

Recommendation:

podtemplates Review the policy rules for 'rbac-3/rbac-exercise-sa' (ServiceAccount) by running 'rbac-tool policy-rules -e rbac-exercise-sa'.
replicasets.apps You can visualize the RBAC policy by running 'rbac-tool viz --include-subjects=rbac-exercise-sa’

replicationcontrollers References: []

RuleName: Secret Readers

resourcequotas . . . RuleUuid: 3c942117-f4ff-423a-83d4-f7d6b75a6b78
rolebindings.rbac.authorization.k8s.io Severity: HIGH

roles.rbac.authorization.k8s.i0 Subject:

secrets " kind: ServiceAccount

serviceaccounts name: rbac-exercise-sa
. namespace: rbac-3

services

statefulsets.apps

Pod
Security

USESICDI..TO BRERK OUT

Pod Security

What is the first thing that always

pops up to people mind when it
comes to pod security?

OFDOCKER CONTAINER

Pod Security

=A container is essentially a process running in isolation on a host

=Shares kernel resources / features of host operating system
= Namespaces

Control Groups (cgroups)
Chroot
Capabilities

FileSystems

Security Context

=Defines how much privileges and level of access to kernel resources a pod or container is getting

=Some examples of security context:
= allowPrivilegeEscalation

= privileged
= readOnlyRootFilesystem

= runAsNonRoot

Pod (Container) Breakout

=Some techniques / misconfigurations could be utilized to break out a container:
= Privileged pod (Overly permissive capabilities)

= Kernel exploit

= Host volumes mount

Cluster

Node1

Node2

Pod Placement

"The blast radius could be even bigger with a failed pod
placement strategy

Cluster

Node1

Node2

Pod Placement

"The blast radius could be even bigger with a failed pod
placement strategy

Cluster

Node1

Node2

Pod Placement

"The blast radius could be even bigger with a failed pod
placement strategy

Observability & Visibility

Do you think you can see what’s happe
root 2 22 9.8 9.9 Q4D
root : ;] 0.8 85
root 2) 3.8 }
root ? 3.8

ning inside a pod?

3816 pts/@ S P6:30 sudo su

= |
=

CLi

ash
kworker/1:0-

kworker/1:3-

root J B .8 : ; §
root 7 5 p.0 @.1 1087 4588 pts/3 5 ; 31 f:00 sudo su
root Z 0 @.8 9.8 1ea72 120 pts/fi 5 B6 3! sudo su

A

Who executed those commands?

Secure Pods!

"Pod Security Admission

*Linux Kernel Security Modules: Seccomp, AppArmor

"nodeSelector

=Qbservability and visibility solutions, e.g., Falco, Cilium

| REGRET{NOTHING.\THE END.

Thank youl!

	Slide 1: OWASP NZ 2023 – What Could Possibly Go Wrong in a K8s Cluster?
	Slide 2
	Slide 3: I am…
	Slide 4: Agenda
	Slide 5: What is Kubernetes?
	Slide 6: Kubernetes Cluster
	Slide 7: Kubernetes Cluster
	Slide 8: Kubernetes Cluster
	Slide 9: Kubernetes Cluster
	Slide 10
	Slide 11
	Slide 12: Networking
	Slide 13: Possible Entry Points From The Outside
	Slide 14: Networking
	Slide 15: Flat Network
	Slide 16: Flat Network
	Slide 17: Flat Network
	Slide 18: Network Policy
	Slide 19: Network Policy
	Slide 20: Network Policy
	Slide 21: Common Misconfigurations
	Slide 22
	Slide 23: RBAC – High-level Concept
	Slide 24: RBAC – High-level Concept
	Slide 25: RBAC – High-level Concept
	Slide 26: RBAC – High-level Concept
	Slide 27: Common Misconfigurations
	Slide 28: Use of Wildcard
	Slide 29: Overly Provisioned groups
	Slide 30: Cluster Role ≈ Role
	Slide 31: How to Find Out Overly Provisioned Principal?
	Slide 32
	Slide 33: Pod Security
	Slide 34: Pod Security
	Slide 35: Security Context
	Slide 36: Pod (Container) Breakout
	Slide 37: Pod Placement
	Slide 38: Pod Placement
	Slide 39: Pod Placement
	Slide 40: Observability & Visibility
	Slide 41: Secure Pods!
	Slide 42
	Slide 43

