OWASP NZ 2023 —
What Could Possibly Go
Wrong in a K8s Cluster?
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Agenda

="Background

*Components within a K8s Cluster

*What Could Possibly Go Wrong?




What is Kubernetes?

“It means Helmsman or “kuBepvitng” in Greek

=Containers Orchestrator p=. | nn"-l- Kan —_
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Networking

=Everything communicates via REST API

=Flat network

*No transport level encryption by default




Possible Entry
Points From
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Networking

=(Un)authorised access to kubelet - /exec, /pods

=Privileged pods on the hunt
*RCE to the pods

=Privileged Service Account token

*Move laterally
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Flat Network
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Network Policy

No worries! Network policy comes to our
rescue!




Network Policy

=Can be defined through YAML manifest

=2 types of policies: Ingress & Egress

*"Enforce access controls based on several conditions
= |P addresses

= Namespace’s label
= Pod’s label
= Port



Network Policy

This should be stopping the “frontend” pods from accessing
the “database” pods in Production. Now it should be secure...
Right?




Common Misconfigurations

=Lack of network policies

=Network policies not being accurate / fine-grained







RBAC — High-level Concept
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Role / RoleBinding /
ClusterRole ClusterRolebinding




RBAC — High-level Concept
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el RBAC—High-level
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Role binding to a specific user / SA




RBAC — High-level
Concept

Role binding to a group of users / SAs




Common Misconfigurations

=Use of Wildcard

=Qverly provisioned groups

=Cluster Role == Role




: rbac.authorization.k8s.io/v:

Use of Wildcard

=*Does one really need all permissions?

rbac.authorization.k8s.1i0/v:
: ClusterRoleBinding

: rbac.authorization.k8s.ic




Overly Provisioned
groups

=*Do all SAs require the same permission?

: rbac.authorization.k8s.io/v:

: ClusterRoleBinding
: pod-reader-binding

: Clusterrole




Cluster Role = Role

*Future-proof

*"For convenience's sake

=*Or sometimes people are just confused...




How to Find Out Overly Provisioned
Principal?

rbac-lookup

SUBJECT SCOPE ROLE

u ra kkess kube-system:attachdetach-controller cluster-wide ClusterRole/system:controller:attachdetach-controller
kube-system:bootstrap-signer kube-public Role/system:controller:bootstrap-signer
kube-system:bootstrap-signer kube-system Role/system:controller:bootstrap-signer
kube-system:calico-kube-controllers cluster-wide ClusterRole/calico-kube-controllers

u rbac—tOOI kube-system:calico-node cluster-wide ClusterRole/calico-node
kube-system:certificate-controller cluster-wide ClusterRole/system:controller:certificate-controller
kube-system:cloud-provider kube-system Role/system:controller:cloud-provider
kube-system:clusterrole-aggregation-controller cluster-wide ClusterRole/system:controller:clusterrole-aggregation-controller

.rbaC—IOO kup kube-system:coredns cluster-wide ClusterRole/system:coredns
kube-system:cronjob-controller cluster-wide ClusterRole/system:controller:cronjob-controller
kube-system:daemon-set-controller cluster-wide ClusterRole/system:controller:daemon-set-controller
kube-system:deployment-controller cluster-wide ClusterRole/system:controller:deployment-controller
kube-system:disruption-controller cluster-wide ClusterRole/system:controller:disruption-controller

~ B T ! P [N ~ v "
rbac-3:rbac-exercise-sa rbac-3 rbac-tool analysis

NAME LIST CREATE UPDATE DELETE We705 16:@8:07.255318 3352736 warnings.go:67] policy/vibetal PodSecurityPolicy is deprecated in v1.21+, unavailable in v1.25+
localsubjectaccessreviews.authorization.k8s.io AnalysisConfigInfo: . .
. . . B Description: Rapid7 InsightCloudSec default RBAC analysis rules
networkpol:_Lc:_Les.crd.pro?ectcallq;o.org Name: InsightCloudSec
networkpolicies.networking.k8s.io Uuid: 9371719c-1031-468c-91ed-576fdc9e9f59
I"IE'EWOI"KSE'ES.CI"U.DTO':le('[CEl].iC0.0Tg CreatedOn: "2023-07-05T16:08:07+08:00"

persistentvolumeclaims Findings:

F : : - Finding:
gggglsrupuonbudgets.pollcv Message: Capture principals that can read secrets

Recommendation:

podtemplates Review the policy rules for 'rbac-3/rbac-exercise-sa' (ServiceAccount) by running 'rbac-tool policy-rules -e rbac-exercise-sa'.
replicasets.apps You can visualize the RBAC policy by running 'rbac-tool viz --include-subjects=rbac-exercise-sa’

replicationcontrollers References: []

RuleName: Secret Readers

resourcequotas . . . RuleUuid: 3c942117-f4ff-423a-83d4-f7d6b75a6b78
rolebindings.rbac.authorization.k8s.io Severity: HIGH

roles.rbac.authorization.k8s.i0 Subject:

secrets " kind: ServiceAccount

serviceaccounts name: rbac-exercise-sa
. namespace: rbac-3

services

statefulsets.apps




Pod
Security



USESICDI..TO BRERK OUT

Pod Security

What is the first thing that always

pops up to people mind when it
comes to pod security?

OFDOCKER CONTAINER



Pod Security

=A container is essentially a process running in isolation on a host

=Shares kernel resources / features of host operating system
= Namespaces

Control Groups (cgroups)
Chroot
Capabilities

FileSystems




Security Context

=Defines how much privileges and level of access to kernel resources a pod or container is getting

=Some examples of security context:
= allowPrivilegeEscalation

= privileged
= readOnlyRootFilesystem

= runAsNonRoot




Pod (Container) Breakout

=Some techniques / misconfigurations could be utilized to break out a container:
= Privileged pod (Overly permissive capabilities)

= Kernel exploit

= Host volumes mount




Cluster

Node1

Node2

Pod Placement

"The blast radius could be even bigger with a failed pod
placement strategy
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Observability & Visibility

Do you think you can see what’s happe
root 2 22 9.8 9.9 Q4D
root : ;] 0.8 85
root 2 ) 3.8 }
root ? 3.8

ning inside a pod?

3816 pts/@ S P6:30 sudo su

= |
=

CLi

ash
kworker/1:0-

kworker/1:3-

root J B .8 : ; §
root 7 5 p.0 @.1 1087 4588 pts/3 5 ; 31 f:00 sudo su
root Z 0 @.8 9.8 1ea72 120 pts/fi 5 B6 3! sudo su

A

Who executed those commands?




Secure Pods!

"Pod Security Admission

*Linux Kernel Security Modules: Seccomp, AppArmor

"nodeSelector

=Qbservability and visibility solutions, e.g., Falco, Cilium




| REGRET{NOTHING.\THE END.




Thank youl!
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