
Protecting pipelines
Secure software delivery using
the OWASP CI/CD Top 10

Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen.

Who were you again?
● Reformed Sysadmin
● Who fell into dev projects
● Was accidentally at birthplace of CI/CD
● Did startups for a while (OK, 10 years)
● Now a security consultant at …

hello@safeadvisory.co.nz

www.safeadvisory.co.nz

What’s this talk about?
● A guided tour through the OWASP CI/CD Top 10
● Your tour guide’s thoughts on CI/CD more broadly
● Oh, and roundabouts

This file is licensed under the Creative Commons Aribution-Share Alike 4.0 International license.
hps://commons.wikimedia.org/wiki/File:Magic_Roundabout_in_Hemel_Hempstead.JPG

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Let’s travel back in time…

Continuous
integration
1990s● Branching is an antipaern
● No tools needed, just an extra workstation
● Of course we wrote tools …

Pratik89Roy, CC BY-SA 4.0 <hps://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Mozilla Tinderbox
1998

The first CI tool that wasn’t cron jobs and spit

CruiseControl
2002
Who remembers CVS?

TeamCity
2006

That’s CI, but what is
CI/CD?

GoCD/Cruise
2007

One of the first products to aempt building
from source to production.

“At an abstract level, a deployment pipeline is an
automated manifestation of your process for geing
software from version control into the hands of your
users. Every change to your software goes through a
complex process on its way to being released. That
process involves building the software, followed by the
progress of these builds through multiple stages of
testing and deployment.”

Jez Humble and David Farley
Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation

Continuous delivery
2010s
Let’s take builds all the way to production

Continuous Delivery book described a lot of techniques in
use on projects around the world

By Grégoire Détrez, original by Jez Humble - This file was derived from:
Continuous Delivery process diagram.png, CC BY-SA 4.0,
hps://commons.wikimedia.org/w/index.php?curid=43977816

CI/CD
(really just Continuous Delivery)

Buildkite
2013-

Azure DevOps
(so hot right now?)

Interesting Times

https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/C
SI_DEFENDING_CI_CD_ENVIRONMENTS.PDF

US Govt

https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF
https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF

CI/CD Top 10

CI/CD Top 10

● CI/CD has come of age
● Aackers have also matured with the industry
● CI/CD servers are a tempting target for threat

actors
● We’ve already seen some serious breaches via

CI/CD: Travis, CodeCov, SolarWinds, etc
● Thanks to Daniel Krivelevich and Omer Gil at Cider

Security

CICD-SEC-1: Insuicient flow control mechanisms

CICD-SEC-2: Inadequate identity and access management

CICD-SEC-3: Dependency chain abuse

CICD-SEC-4: Poisoned pipeline execution (PPE)

CICD-SEC-5: Insuicient PBAC (pipeline-based access controls)

CICD-SEC-6: Insuicient credential hygiene

CICD-SEC-7: Insecure system configuration

CICD-SEC-8: Ungoverned use of third party services

CICD-SEC-9: Improper artifact integrity validation

CICD-SEC-10: Insuicient logging and visibility

How’s it going to work from here?

risk examplecontrol> >

Insuicient flow control mechanisms

● Aackers with access to SCM, CI or other systems can deploy malicious artefacts to
production without approval or review.

● Code pushes to production, auto-merges of code, malicious artefacts, changes to
infrastructure are all possible

● Applicable to Git repos, CI/CD systems, utilities

CICD-SEC-1

RISK

Insuicient flow control mechanisms

● Add Branch Protection rules for branches that go to production
● Limit auto-merge rules
● Bake reviews into the pipeline to limit the impact when one gets through
● Use Drift Detection to sni out config change

CICD-SEC-1

CONTROLS

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Insuicient flow control mechanisms
CICD-SEC-1

EXAMPLE

Dependency chain abuse

● Dependency confusion (public packages that aempt to mimic your org’s private
packages)

● Dependency hijacking (taking control of a public package that your org uses)
● Typosquaing (seeding package repos with common misspellings of popular packages)
● Brandjacking (borrowing credibility from a brand so that developers trust your packages)
● New! NPM Manifest Confusion - package.json in GitHub is not the package.json in the

distributed package

CICD-SEC-3

RISK

Dependency chain abuse

● Proxy all packages from the internet, instead of having dev systems fetch direct
● Encourage the use of internal, pre-approved packages where possible
● Enable checksums and signatures
● Register and document package scopes for your org to reduce confusion

CICD-SEC-3

CONTROLS

Dependency chain abuse
CICD-SEC-3

EXAMPLE

Dependency chain abuse
CICD-SEC-3

EXAMPLE

Poisoned pipeline execution (PPE)

Aackers with access to code (and not CI/CD system) can still manipulate the build process:

● Direct PPE: aacker modifies config files in repository, via direct commit to unprotected
branch, or via Pull Request

● Indirect PPE: aacker injects malicious code via build systems, build scripts, test
frameworks or automatic tools like linters and scanners

● Public PPE: many projects build in public and see Pull Requests as a necessary part of Open
Source development. Malicious OSS participation can expose secrets or other code.

CICD-SEC-4

RISK

Poisoned pipeline execution (PPE)

● Ensure that pipelines exposed to unreviewed code run on isolated nodes, not the ones
that connect to everything else (e.g. some else’s)

● If you must build from public repos: where possible, don’t build from forks
● Ensure there are branch protection rules to limit triggers
● Try and keep pipeline configuration away from exposed repos
● Limit SCM access to those who really need it
● Limit credentials granted to pipelines

CICD-SEC-4

CONTROLS

Poisoned pipeline execution (PPE)
CICD-SEC-4

EXAMPLE

Poisoned pipeline execution (PPE)
CICD-SEC-4

EXAMPLE

Poisoned pipeline execution (PPE)
CICD-SEC-4

EXAMPLE

Insuicient PBAC (Pipeline-Based Access
Controls)

● Pipelines need to run on someone’s computer (even in the cloud)
● That node will access source code, cloud services, secrets, artifacts, filesystems, other

pipelines, SSH keys, the public Internet, your network
● Someone needs to have a good think about what could go wrong

CICD-SEC-5

RISK

Insuicient PBAC (Pipeline-Based Access
Controls)

● Each pipeline should have enough access to resources needed to do its job and no more
● That includes nodes, which should also have access controls to prevent lateral movement

and data breaches (does your pipeline have full access to the production database?)
● ADO users, this is where you should put Checks on Service Connections, Pipelines,

Environments

CICD-SEC-5

CONTROL

Insuicient PBAC (Pipeline-Based Access
Controls)
CICD-SEC-5

CONTROL

Insuicient PBAC (Pipeline-Based Access
Controls)
CICD-SEC-5

CONTROL

Insuicient PBAC (Pipeline-Based Access
Controls)
CICD-SEC-5

EXAMPLE

Improper artifact integrity validation

● Otherwise known by its celebrity alter-ego, the SolarWinds aack.
● An adversary can alter or inject artefacts with a malicious payload

CICD-SEC-9

RISK

Improper artifact integrity validation

● Consider commit signing
● Verification tools for artefacts, e.g. signing
● Manage configuration drift
● Third party resources should always be validated - review the full dependency chain for

your pipelines

CICD-SEC-9

CONTROL

Improper artifact integrity validation
CICD-SEC-9

EXAMPLE

Improper artifact integrity validation
CICD-SEC-9

EXAMPLE

and all the rest…
(the quickfire round)

Inadequate IAM

● It’s necessary to connect the CI/CD tooling to just about everything
● Identities are sprinkled throughout the CI/CD ecosystem: Git, CI/CD, container registries,

app servers, APM tools, etc.
● Least privilege often goes out the window with delivery deadlines
● Stale, local, external, self-registered or shared identities make it worse

CICD-SEC-2

Insuicient credential hygiene

● Credentials are everywhere in a CI/CD system
● They should never be in source (but of course they are)
● They should also be granted for a particular context and not reused
● Nor should they exist in container image layers, or console output
● Credentials should be rotated or retired appropriately

CICD-SEC-6

Insecure system configuration

● CI/CD systems need hardening like (if not more than) production systems
● Patching
● Network access control (what databases can they see?)
● Granting least privilege on the host OS
● Configuration for authorisation, access control, logging etc.
● Credential hygiene

CICD-SEC-7

Ungoverned use of third party services

● Your colleagues can sign up and implement services in minutes
● For example: code analysis tools, testing tools, deployment tools etc
● Third party tools have been compromised and used for aacks on their users

CICD-SEC-8

Insuicient logging and visibility

These systems tend to start with “it’s just a dev tool bro - you’re probably missing the detective
controls that you need

If your threat model doesn’t include ‘what if someone compromises our pipelines or CI/CD
infrastructure’, you may not have suicient:

● Audit logs
● Metrics
● Anomaly detection and SIEM

CICD-SEC-10

TL;DR
hps://owasp.org/www-project-top-10-ci-cd-security-risks/

Roundabouts

Map data ©2023 Google

Roundabouts

Obukit, CC BY-SA 3.0 <hps://creativecommons.org/licenses/by-sa34.0>, via Wikipedia

A final plea
● Keep all your pipelines as YAML versioned in project repos
● Keep your YAML valid with a formaer
● Don’t split build and release concerns, unless you must
● Maintain a threat model for your pipelines, nodes and services
● Teach developers about the threats - they have dierent incentives, but they

won’t like a breach either

Thank you!

