
Introduction to the

OWASP Top 10

Austin Chamberlain, OWASP Auckland



Top 10 Background
● Started in 2003
● Awareness document, targeted 

at:
○ Developers
○ Security professionals
○ Security governance and 

management
● Lists the Most Critical 

Security Risks to Web 
Applications

● Risks - not exploits or impacts
● OWASP Flagship Project



Versions and Updates
2004, 2007, 2010, 2013

2017

2021 - current version

2025 - under development

Images: owasp.org



2021 Top 10

3 new categories, 4 categories with name/scope changes, some consolidation

Images: owasp.org



2025 Top 10



Methodology
Hybrid system - data and survey

● Eight categories from 
contributed data

● Two categories from community 
survey

Why? Completeness.

Data results generally limited to 
automated tests, which take time to 
develop and refine.

Community survey allows front line 
experts to highlight issues not yet 
in the data.

Image: DALL-E 3



A01: Broken Access Control
Access control failure allows a 
function outside user’s intended 
limits.

● Bypass access control
● Access another account
● Elevation of privilege
● Violation of least 

privilege/default deny

Prevention:

Deny by default; unified access 
control across application; limit 
metadata and rates

Image: “Desire Path”, 
flickr.com



A02: Cryptographic Failures
Causes:

● Cleartext protocols - HTTP, FTP
● Old, weak, or deprecated 

algorithms - MD5
● Default keys, weak keys, key 

management (are your keys in 
your Git repo?)

● Server certificate correct and 
validated?

Prevention:

● Store only required sensitive 
data, and classify 
appropriately

● Use up-to-date algorithms and 
protocols, and manage keys

● Encrypt data at rest and in 
transit

● Ensure cryptographic randomness 
is applied where required

● DO NOT ROLL YOUR OWN CRYPTO



A03: Injection
Drops to third position, even with 
inclusion of XSS

Causes:

● User-supplied data is not 
validated or sanitized

● Hostile data is directly used

Examples:

● SQL, OS Command

Prevention:

● Safe API
● That’s it.
● OK, server-side input 

validation - but get it right!
● LIMIT in SQL queries

Image: xkcd.com



A04: Insecure Design
New for 2021 - design and architectural flaws.

“Shift left” beyond coding to pre-code design.

Examples:

● Bots for ticket/item scalping
● Booking/ordering system attacks

Prevention:

● Secure development life cycle
● Threat modeling
● OWASP SAMM (Security Assurance Maturity 

Model)

Image: @karinakovacs2



A05: Security Misconfiguration
Causes:

● Cloud services permissions
● Unnecessary features
● Default accounts
● Verbose error messages
● Security settings not correctly applied

Prevention:

● Ongoing security testing and hardening
● Minimal platforms
● Segmented architecture - eg 

containerization, cloud security groups
Image: DALL-E 3



A06: Vulnerable and Outdated Components
Qualifies for OWASP top 10 from 
both community survey and data!

Does not directly link to CVEs 
(Common Vulnerability and Exposure)

Examples:

● Unaware of supply chain or 
software bill of materials 
(SBOM)

● Software components vulnerable 
or unsupported

● No or slow upgrades, scanning

Prevention:

● Removed unused components
● Have a software inventory and 

continuously update!
● Manage software updates over 

correct channels
● If old software must be used, 

mitigate and document.



A07: Identification and Authentication Failures
Previously Broken Authentication

Causes - does application allow:

● Credential stuffing
● Brute force attacks
● Weak passwords

Does application:

● Lack Multi-Factor 
Authentication (MFA)?

● Not hash stored passwords?
● Expose or reuse session ID?

Prevention:

● MFA
● Rate-limit and monitor for 

systematic password attacks
● Enforce strong passwords
● … and don’t allow default 

creds!
● Prevent account enumeration 

through standard messages



A08: Software and Data Integrity Failures
Examples:

● Application relies on plugins, 
libraries and modules from 
untrusted sources, 
repositories, and content 
delivery networks (CDN)

● Insecure CI/CD pipeline
● Attackers are using 

typo-squatting attacks against 
common module names

Prevention:

● Use signed software channels.
● Use trusted repositories, or 

even internal repositories.
● Use a software supply chain 

security tool - OWASP 
Dependency Check or OWASP 
CycloneDX

● Implement review process for 
code and configuration changes.



A09: Security Logging and Monitoring Failures
Would you detect an attack? With 
enough time to react? With enough 
information to respond?

● Are you logging and monitoring?
● What kind of events?
● Is someone actually reading the 

logs?
● Where are the logs stored?
● Are there alerts on the logs?
● Would a pentest trigger an 

alert?

Prevention:

● Log access events with context 
and good retention period.

● Generate logs in useful format.
● Protect logs against 

injections/attacks.
● Institute effective monitoring 

and alerting.
● Have an incident response plan.



A10: Server Side Request Forgery
Category from community survey.

Low incidence rate in data, 
above-average Exploit/Impact 
potential rating.

SSRF definition: when a web 
application fetches a remote 
resource without validating the 
user-supplied URL.

Architecture complexity and cloud 
services increase SSRF severity.

Prevention:

Network: segmentation, firewall 
“deny by default”

Application: sanitize 
client-supplied data, do not send 
raw responses to clients



OWASP Top Ten - Quick Lessons
1. OWASP Top 10 is not everything! There are other 

risks.
2. Frameworks solve a lot of problems.
3. Threat modeling (especially at the start) and 

testing (always).
4. Other OWASP projects provide specific guidance on 

development, verification, and testing.


