
Make Your CI More 
Secure And Less Spicy 
With Some SLSA
OWASP NZ DAY 2024
6 SEPTEMBER 2024
BY JAMES COOPER



OWASP NEW ZEALAND owasp.org.nz

Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen.



Who’s this guy?
oSecurity-interested software developer (these days)

oApplication Developer at 2degrees

oPh.D. in Computer Science from University of Auckland

oStill getting my own head around SLSA (& friends)

oAssume (for lack of time) that you already know about supply-chain security issues

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Overview

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



So, SLSA, eh?

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



SLSA ‘from 10,000 feet’
o“Supply-chain Levels for Software Artifacts”
o Pronounced like “salsa”

oOfficial website at https://slsa.dev/
o “It’s a security framework, a checklist of standards and controls to prevent tampering, improve integrity, 

and secure packages and infrastructure. It’s how you get from "safe enough" to being as resilient as 
possible, at any link in the chain.” (taken from the website’s frontpage)

oAims to make software supply chain attacks much harder to achieve

oOriginally from Google, now an Open Source Security Foundation (OpenSSF) project

oReleased v1.0 in April 2023, but still work-in-progress
o Initial release scaled back original ambitions to get it out the door

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA

https://slsa.dev/


SLSA & Friends
oSLSA is part of a broader (still nascent) interconnected system
o SLSA

o FRSCA

o SigStore

o Tekton

o In-toto attestation

o Etc…

oA rather tangled web, if you get far enough into it
o Everything seems to be (semi-)independent, too

oWill just focus on (part of) SLSA today, though, since we have ≤ 30 minutes, not 3 days
o ∴ discussion at high level only 

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



What does SLSA currently target?

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



What does this talk target?

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Elements of SLSA

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



SLSA Terminology
oBuild
o “Process that transforms a set of input artifacts into a set of output artifacts. The inputs may be sources, 

dependencies, or ephemeral build outputs.”

oArtifact
o “An immutable blob of data; primarily refers to software, but […] can be […] any artifact.”

oDependency
o “Artifact that is an input to a build process but that is not a source.  […] it is always a package.”

oSource
o “Artifact that was directly authored or reviewed by persons, without modification.”

oPackage
o “Artifact that is ‘published’ for use by others.”

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



More SLSA Chunks
oAs of v1.0, SLSA has one ‘track’, the Build Track, with two main foci
o Producing ‘provenance’ for built artifacts

o Using provenance to verify artifacts consumed as dependencies

oFour levels of security assurance (higher levels depend on lower ones)
o Level 0:  No Guarantees

o Level 1:  Provenance Exists

o Level 2:  Hosted Build Platform

o Level 3:  Hardened Builds

oSome levels currently only achievable with certain build platforms

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Provenance
o“Attestation (metadata) describing how the outputs were produced, including identification of 
the platform and external parameters.”

oRequired for SLSA Build Level 1+

oAt higher levels, provenance is generated and signed by the build platform

oProducers produce it to accompany their packages

oConsumers use it to verify consumed packages match expectations

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



SLSA Provenance ≠ SBOMs
oSounds an awful lot like a Software Bills of Materials (SBOMs)?

oSLSA Provenance & SBOMs are related, but not the same
o SBOM describes what went into an artifact

o Provenance covers how it was made

oSLSA project likens it to food production
o SBOM lists ingredients

o Provenance describes food safety standards followed by manufacturers

oUse both!

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



SLSA in your CI

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Differentiated Integration
oDifferent languages and ecosystems have different tooling available so far
o Only some have much support at all… 

o Some generic tools also

oDifferent build systems have different maximum SLSA Levels
o Currently, only Google Cloud and GitHub Actions are rated up to L3

o Discuss GitHub Actions today—widely used & available

oTwo main things you can do
o Produce provenance

o Verify provenance

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Producing Provenance
oUsed by consumers of your package to confirm that it’s the genuine article

oThe provenance describes how the package was built, including
o Build platform

o Build process

o Build inputs

oDoesn’t by itself do much to help producers on a technical level
o Proper implementation suggests relatively secure CI, though

o Can be beneficial on a reputational/social level—reflects well on you

oMight (hopefully will) be required by customers in future

oMain focus of current security levels

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Getting to Level 1
oLevel 0 is a lack of any assurance
o E.g., developer doing local build

o Generally, no intention to provide any form of assurance

oLevel 1 means
o Build processes are consistent

o ‘Some’ provenance is produced and provided for a package

o No requirement for cryptographically signing provenance

oMust meet level 1 to go further

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Getting to Levels 2 & 3
oLevel 2
o Builds are always performed on dedicated infrastructure

o Provenance is digitally signed

o Difficult for external parties to fake your packages
o Still potentially vulnerable to insider threats

oLevel 3
o Build systems must be hardened against tampering

o Build platform ensures all builds are isolated

o Key material for signing provenance must never be exposed

oMakes it extremely difficult for anyone to muck with build process
o Does little about malicious updates to genuine sources

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Producing Provenance with GHA
oGitHub has published a basic provenance action, actions/attest-build-provenance
o Run it on an artifact produced by your Actions workflow to create signed provenance

oThe SLSA project also has builders and generators

oBuilders both run the build process and produce provenance
o Builders for NPM, Go, Java & Docker containers—meet L3 requirements

oGenerators just produce provenance for other artifacts 
o Generators available for generic artifacts and container images

o Generators pre-date GitHub’s Actions

oUnclear whether GitHub’s action and the generators meet L2 or L3 requirements

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Consuming Provenance
oDetails how and where a package was built

oProvenance is digitally signed, at higher levels

oVerifying provenance signature confirms a package came from the real producers
o Stops sneaky swaps of packages for illegitimate knock-offs

oDoesn’t by itself stop malicious corruption of legitimate builds
o Out-of-scope of SLSA

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Consuming Provenance with GHA
oVerify artifacts produced by GitHub Action via GitHub’s CLI
o gh attestation verify …

o Not totally clear whether it works for other provenance generators

oSLSA produce their own CLI to verify artifacts produced by their builders and generators
o Also supply an installer action to use it in GitHub Actions

oOthers out there, but make either of these your first choice

oIn all cases, result can be as simple as a binary ‘yes/no verified’
o Stop your CI process on a ‘no’!

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



DIY sans SLSA

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



No Silver Bullets
oSLSA doesn’t address all possible issues
o Left-pad, anyone?

o Polyfill.io

o So-called ‘protestware’

oMany issues can be prevented without SLSA, anyway

oDo ‘The Fundamentals’ well
o A lot of what SLSA is telling us, when you get down to it

o Can achieve much of the same benefits without SLSA! (DIY)

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



‘The Fundamentals’?
oAutomate the heck out of everything possible

oUse separate, dedicated build infrastructure

oDelegate responsibility to trusted platforms, where appropriate

oClosely control privileges and access permissions (and monitor)

oCryptographically sign outputs/artefacts

oVerify cryptographic signatures, and file & git commit hashes, too

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



The End
Some potentially useful links:

ohttps://slsa.dev/

ohttps://openssf.org/

ohttps://github.com/slsa-framework/slsa-github-generator

ohttps://github.com/slsa-framework/slsa-verifier

ohttps://github.com/actions/attest-build-provenance

ohttps://docs.github.com/en/actions/security-for-github-actions/using-artifact-
attestations/using-artifact-attestations-to-establish-provenance-for-builds

ohttps://docs.docker.com/build/metadata/attestations/

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA

https://slsa.dev/
https://openssf.org/
https://github.com/slsa-framework/slsa-github-generator
https://github.com/slsa-framework/slsa-verifier
https://github.com/actions/attest-build-provenance
https://docs.github.com/en/actions/security-for-github-actions/using-artifact-attestations/using-artifact-attestations-to-establish-provenance-for-builds
https://docs.github.com/en/actions/security-for-github-actions/using-artifact-attestations/using-artifact-attestations-to-establish-provenance-for-builds
https://docs.docker.com/build/metadata/attestations/


Examples of supply chain attacks
oWebmin
o Someone got into the build server and updated a local copy of a source file

o Build server apparently didn’t use source directly from version control

oEvent-stream
o Updated NPM package to (temporarily) add a new dependency

o Version of dependency published to NPM differed from source on GitHub

o Added extra code to target certain Bitcoin wallets

oCodeCov
o Gained access to CodeCov’s cloud environment

o Replaced official script asset with malicious version that users accessed instead

oThe sorts of things SLSA aims to prevent

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



SLSA vs The Examples

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA



Examples Revisited
oWebmin
o File changed on build server

o Treat source as artifact, verify provenance before building

o Hardened build system could help, too

oEvent-stream
o Added bit to NPM package to target Bitcoin wallets

o Recursively applying provenance verification to dependencies would have detected modification

oCodecov
o Swapped cloud-hosted file for malicious version

o Verifying the package would have shown it wasn’t built the proper way

MAKE YOUR CI MORE SECURE AND LESS SPICY WITH SOME SLSA


	Start
	Slide 1: Make Your CI More Secure And Less Spicy With Some SLSA
	Slide 2
	Slide 3: Who’s this guy?

	Overview
	Slide 4: Overview
	Slide 5: So, SLSA, eh?
	Slide 6: SLSA ‘from 10,000 feet’
	Slide 7: SLSA & Friends
	Slide 8: What does SLSA currently target?
	Slide 9: What does this talk target?

	Elements of SLSA
	Slide 10: Elements of SLSA
	Slide 11: SLSA Terminology
	Slide 12: More SLSA Chunks
	Slide 13: Provenance
	Slide 14: SLSA Provenance ≠ SBOMs

	SLSA in your CI
	Slide 15: SLSA in your CI
	Slide 16: Differentiated Integration
	Slide 17: Producing Provenance
	Slide 18: Getting to Level 1
	Slide 19: Getting to Levels 2 & 3
	Slide 20: Producing Provenance with GHA
	Slide 21: Consuming Provenance
	Slide 22: Consuming Provenance with GHA

	DIY sans SLSA
	Slide 23: DIY sans SLSA
	Slide 24: No Silver Bullets
	Slide 25: ‘The Fundamentals’?

	End
	Slide 26: The End

	Software Supply Chain Attacks
	Slide 27: Examples of supply chain attacks
	Slide 28: SLSA vs The Examples
	Slide 29: Examples Revisited


