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Painless Agile Security
Why is this all so hard?
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Thank You to Our Sponsors and Hosts!

Without them, this Conference couldn’t happen.



The next 30 minutes

• How did we get here?


• How does Agile go wrong?


• How do you make it better?



1 minute of Agile hate

• Scrum Masters (awkward name!)


• Sprint packing


• Sprint planning meetings


• Micromanagement


• Daily standoffs



Getting Agile wrong



Getting Agile wrong
Also, we don’t understand Rugby metaphors



Getting Agile wrong
What do we mean when we say Agile?

• There are many Agile methodologies (with a big “A”)


• There are lots of agile practices (with a small “a”)


• Process alone will not help teams deliver working software to production


• That takes a team, with skills and autonomy



Getting Agile wrong
The 90s

• There was no Git, SVN, or TFS


• You were probably doing well to have any source control


• Developers branched code for months


• JIRA didn’t exist


• C# didn’t exist


• People still used Visual Basic and Perl



Getting Agile Wrong
2001-ish

• Kent Beck publishes the eXtreme Programming Explained book


• Based on real world success of Smalltalk nerds at Chrysler in late 90s


• Project was a real success and they wrote up the lessons as XP



Getting Agile Wrong
12 XP practices
• Pair programming


• Planning game


• Test-driven development


• Whole team


• Continuous Integration


• Refactoring


• Small releases


• Coding standards


• Collective Code Ownership


• Simple Design


• System metaphor


• Sustainable pace



Getting Agile Wrong
As XP takes off, Scrum appears from 1993 to ruin the match

• Scrum team


• Sprints


• Scrum Master


• Product Owner


• Product backlog


• Sprint backlog


• Velocity



Getting Agile Wrong
How the scrum collapses

• Teams can stick to the scrum “rules”


• There are no rules about software development practice


• That works, until delivery stops because of technical debt



Ways to do Agile, poorly

• Prioritising delivery over code quality


• “Refactoring sprints”


• Features without testing, security, or operational requirements


• Estimates as a commitment


• Sprint stuffing


• Senior management in standup and retrospective


• Not shipping to production when code is “done”



Doing Agile better
Everything fits in the timebox



Doing Agile better
Everything fits in the timebox

• An Agile sprint or iteration is meant to contain the full lifecycle of a project


• That means TDD (before the code)


• Acceptance tests (after the code, in the same repo if you can)


• Security


• Deployment



Doing Agile better
Everything fits in the iteration / sprint

• If that means you do fewer features, but better, that is OK


• Retrospectives, velocity, yesterday’s weather etc. are designed to help the 
team do better in the next iteration or sprint



Doing Agile better
Estimates are for the devs

• The team doing the work needs to estimate the complexity of the work (not 
the duration)


• If things are more complicated than expected, the team can review their 
estimation


• Estimated complexity shouldn’t be a delivery commitment



Doing Agile better
Iterative, not Incremental

• Incremental approaches are for building houses


• We iterate on software every day


• We also iterate on features as we understand more



Doing Agile better
How do you know when it works?

• TDD is a superpower for iterative work


• You get to make changes in the small in code with lower risk


• Acceptance tests prove that your app can be “wired up” properly



Doing Agile better
You can measure quality

• Unit Test Coverage %


• Acceptance Test Coverage %


• Number of Code Smells


• Percentage of Duplication


• Cyclomatic Complexity


• Number of SAST vulnerabilities



Doing Agile better
Beware of Conway’s Law

• Teams need to deliver working code


• In a single branch


• Abandoned branches (including PRs not merged) don’t help us deliver code


• Continuous Integration and Trunk Based Development fixed that in the 90s



Sneaking security into the sprint



Sneaking security into the sprint
Start Small

• Agile is all about breaking work up into small chunks


• Any security tool is better than nothing


• Adding new analysis is an iterative and incremental improvement - and it 
doesn’t matter if you throw it away later


• That could be SCA, SAST, DAST.


• Just do something.  Inside this sprint.



Sneaking security into the sprint
Work with Developers and QA

• Find the team members who care about the whole thing


• You’re a team member, not a cop - gain everyone’s trust by helping them with 
security


• Use the team’s tools


• e.g. if they use Atlassian products, hold your nose and use them too


• or if they like diagrams in code, learn those



Sneaking security into the sprint
Fit into the team’s workflows

• You want to find security issues in new code


• Ideally within the sprint, so it’s still relevant to the devs


• And work with them through standups and retrospectives to help them get 
better



Summary

• Processes or Methodologies aren’t enough


• But it is possible to do Agile well


• You can do security in Agile, but you need to work with it



Thanks!

• If there’s time, feel free to ask questions


• Or come have a chat if you see me


• julian@safeadvisory.co.nz


• https://www.linkedin.com/in/juliansimpson
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