
Be Less Primitive To Be 
More Secure
OWASP NZ DAY 2025

5 SEPTEMBER 2025

BY JAMES COOPER



OWASP New Zealand owasp.org.nz

Thank You to Our Sponsors and Hosts!

Without them, this conference couldn’t happen.



And you are?
oSecurity-interested software developer

oApplication Developer at 2degrees

oPh.D. in Computer Science (+ BCom) from University of Auckland

oInterested in a wide variety of areas of comput[ing|ers]

oFan of using types intelligently in software development

BE LESS PRIMITIVE TO BE MORE SECURE



Injection Attacks

BE LESS PRIMITIVE TO BE MORE SECURE



o“Injection flaws occur when an application sends untrusted data to an interpreter.”
o From https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html

o Number 3 on the OWASP Top 10 2021

o Found in 19% of all applications tested for the Top 10

oThe key aspect is that in every instance, some aspect of the behaviour is determined at runtime, 
through directly incorporating or processing user input or other non-controlled data

oThe classic examples are things like SQL Injection, Cross-Site Scripting (XSS), OS command 
injection, basically any time somebody uses eval or system or similar
o I’d also say Open Redirects kinda count

Less fun than a vaccination

BE LESS PRIMITIVE TO BE MORE SECURE

https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html


oBecause user input is mixed in with commands, which are then evaluated
o The classic mistake of confusing data for instructions

o Too much decided at runtime

o “Eval is evil”

oMany people consider injection attacks (or, SQLi, at least) a solved problem!

oTo avoid injection attacks don’t interpret the data, just use them

oBeing less primitive and using types intelligently, can help by making it easier to do the right 
thing and harder to do the wrong thing

But why?

BE LESS PRIMITIVE TO BE MORE SECURE



“SELECT * FROM Users

  WHERE Username = ‘“

  + InputValue1 + 

  “’ AND Password = ‘”

  + InputValue2 + “’;”

Classic SQL Injection

BE LESS PRIMITIVE TO BE MORE SECURE



“SELECT * FROM Users WHERE Username = ‘“ + InputValue1 + “’ AND 

Password = ‘” + InputValue2 + “’;”

oWhat if my input is username: ‘ OR ‘1’=‘1’ -- and password: hi mum!?
o Kinda like the Hello World of SQLi

oIn effect, from the database’s perspective the query becomes
SELECT * FROM Users WHERE Username = ‘’ OR ‘1’=‘1’

o Gets all users in the DB—probably not what you want as the developer

oMany other possibilities (potentially, just about whatever the DB supports in a SELECT statement)

So where’s the problem?

BE LESS PRIMITIVE TO BE MORE SECURE



oCross-site scripting (XSS) arises because we take user input as page specification
o E.g. repeat user input back on a dynamically constructed page

oPlug the input into our page’s source, then tell the server or browser to render the whole thing

oWe ignore the semantic meaning: user input

oJumble it up with something semantically different, our page’s source code

oThese two things are not the same, and shouldn’t be treated the same

Similar for XSS

BE LESS PRIMITIVE TO BE MORE SECURE



oThe Mars Climate Orbiter was a fairly significant availability (and integrity?) failure

oMCO crashed during orbital insertion, thruster calculations were way off

oTurned out sub-component contractor used pound-force seconds, but NASA system expected 
Newton-seconds (and NASA’s contract specified use of SI units…)

oThe problem was that both quantities were represented the same way
o “Don’t give me naked numbers”

oThese are different types of quantity, don’t represent them identically

Strings aren’t the only primitive problem

BE LESS PRIMITIVE TO BE MORE SECURE



Handling Bits, Typically

BE LESS PRIMITIVE TO BE MORE SECURE



“SELECT * FROM Users

  WHERE Username = ‘“

  + InputValue1 + 

  “’ AND Password = ‘”

  + InputValue2 + “’;”

What is this?

BE LESS PRIMITIVE TO BE MORE SECURE



oCeci n’est pas une pipe SQL query (“This is not a SQL query”)

oI’d argue that was a string/bunch of strings glued together, and not a SQL query
o It does convey the concept of a SQL query

oSQL queries exist inside databases
oWe use strings to communicate our intent to the DB

o It parses the string into its own internal representation

o The actual query is run using that representation

oDynamically parsed strings are one way to create queries, so are stored procedures et al.

The Treachery Of Strings

BE LESS PRIMITIVE TO BE MORE SECURE



oEverything in a typical modern electronic computer is represented with bits—just two values 
and their positions in sequences (and how we interpret them)

oWorking with the bits directly is a pain in the neck, though

oWe abstract over that with a programming language’s primitive types
o E.g. int, float, char, string, etc.

 

oFor some reason, people often stop there and represent everything in those types

oCommonly known as “primitive obsession”

Modern Primitive

BE LESS PRIMITIVE TO BE MORE SECURE



oBeneath the abstraction, we might indeed represent different concepts with the same 
sequences of bits

oDoesn’t mean they don’t have different semantic concepts behind them, though

oWhy should we let the bits be the boss?

oEvery useful recent programming language has facilities for making your own types

oCreate the abstractions you want, to get the behaviours you intend!

Be Less Primitive

BE LESS PRIMITIVE TO BE MORE SECURE



The purpose of abstracting is not to be vague, 
but to create a new semantic level in which one 
can be absolutely precise.

Edsger W. Dijkstra

(taken from 
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#The_Humble_Programmer_(1972) on 10 
August 2025)

Everyone’s favourite computer scientist

BE LESS PRIMITIVE TO BE MORE SECURE

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#The_Humble_Programmer_(1972)


Check Your Types at the 
Door Edges

BE LESS PRIMITIVE TO BE MORE SECURE



oInput to a program pretty much inevitably has to come in the form of primitive values

oSee e.g. the limited types available in JSON, or the typical command line

oDoesn’t mean you leave them like that, though

oTurn valid input into relevant types, and reject invalid input at the gates
o Use domain-sensible types on the inside—usually safer and easier to work with

oParse (rather than validate).  See https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-
validate/ 

Parsing > validation

BE LESS PRIMITIVE TO BE MORE SECURE

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/


oParsing to types rather than merely validating has advantages
o Input is validated as part of construction—don’t even represent invalid input

o Compilers prevent you using the wrong thing in the wrong place

o Clearer intent in code

oEventually, will probably have to ‘lower’ back to primitive types for output or interfacing

oDefine how to lower in one place, and do it well
o Developers automatically use best practices

o No more forgetting to do the safe thing, ‘cause it’s the only thing

o Even if it’s just escaped strings, you know it’s done consistently

Types with benefits

BE LESS PRIMITIVE TO BE MORE SECURE



oWe can use (basically) the same solution

oPhysical values are a combination of quantity and unit

oSo represent them in that way!

oF#’s ‘Units of Measure’ do exactly this
o The type information is all erased before run time—no performance impact

oUsing them would almost certainly have caught the Mars Climate Orbiter issue at compile time

What about those foot-pound seconds?

BE LESS PRIMITIVE TO BE MORE SECURE



Getting to the Point…

BE LESS PRIMITIVE TO BE MORE SECURE



oCreate meaningful abstractions where the easy path is the correct path

oOr, simply wrap a primitive type, but restrict its allowed behaviour(s)

oYou decide what goes, and what doesn’t

oBuggy code?  Compiler says no.  Unintended runtime actions?  Does not compute.

oCan also be an architectural/coding boon
o Devs are more likely to use something well if that’s the easiest way to use it

o Good names clarify intentions

Be More Secure

BE LESS PRIMITIVE TO BE MORE SECURE



oGoing back to the SQL query example again

oAs a string, pretty easy to do SQL injection with the input:  ‘ OR ‘1’=‘1’ --
Becomes something like
SELECT * FROM Users WHERE Username = ‘’ OR ‘1’=‘1’

oInstead, turn it into a type, separate query from its inputs
o Give inputs necessary treatment before sending to DB

o Pretty much what most good ORMs do anyway

oMany possible ways to do this, the key is to use your brain and not a primitive string
o E.g. a stored procedure/prepared statement in your DB or via a good ORM

To be primitive or not to be

BE LESS PRIMITIVE TO BE MORE SECURE



db.ExecuteQuery(”SELECT * FROM Users WHERE Username = ‘” + 

InputValue1 + “’ AND Password = “ + InputValue2 + “’;”);

db.Query(“GetUser”, new { Username = InputValue1, Password = 

InputValue2 }, commandType: CommandType.StoredProcedure);

db.Users.SingleAsync(user => user.Username == InputValue1 && 

user.Password == InputValue2);

Which is least secure? (C#-ish edition)

BE LESS PRIMITIVE TO BE MORE SECURE



Conclusion

BE LESS PRIMITIVE TO BE MORE SECURE



oInjection attacks happen because input is mixed in with instructions, then interpreted
o Semantic concepts are ignored, everything is treated the same

o Often just a bunch of strings stuck together

o Using primitive types over more meaningful custom ones is “primitive obsession” (and silly)

oWe’re not always helped by our tools and systems
o Poor interfaces can lead to us to insecure approaches

oWe often have to turn things into a string or similar to communicate with something else

oYou should still treat different semantic concepts differently for as long as possible

Things to remember

BE LESS PRIMITIVE TO BE MORE SECURE



oSmart use of types isn’t the only way to prevent injection attacks, and such prevention isn’t the 
only potential benefit of the smart use of types

oMaking the instructions and the input separate types can help avoid injections
o E.g. database stored procedures distinguish parameters from SQL, XSS defences do the same for user 

input and HTML & friends

o Good abstractions make the right thing easier, the wrong thing harder

o You get more control over permitted behaviour

o At the very least, much harder to mix the two up inadvertently

oYour thinking it through earlier, helps stop devs make mistakes later, prevents injection attacks 
even later

More things to remember

BE LESS PRIMITIVE TO BE MORE SECURE



Any Questions?

Fin

BE LESS PRIMITIVE TO BE MORE SECURE


	Slide 1: Be Less Primitive To Be More Secure
	Slide 2
	Slide 3: And you are?
	Slide 4: Injection Attacks
	Slide 5: Less fun than a vaccination
	Slide 6: But why?
	Slide 7: Classic SQL Injection
	Slide 8: So where’s the problem?
	Slide 9: Similar for XSS
	Slide 10: Strings aren’t the only primitive problem
	Slide 11: Handling Bits, Typically
	Slide 12: What is this?
	Slide 13: The Treachery Of Strings
	Slide 14: Modern Primitive
	Slide 15: Be Less Primitive
	Slide 16: Everyone’s favourite computer scientist
	Slide 17: Check Your Types at the Door Edges
	Slide 18: Parsing > validation
	Slide 19: Types with benefits
	Slide 20: What about those foot-pound seconds?
	Slide 21: Getting to the Point…
	Slide 22: Be More Secure
	Slide 23: To be primitive or not to be
	Slide 24: Which is least secure? (C#-ish edition)
	Slide 25: Conclusion
	Slide 26: Things to remember
	Slide 27: More things to remember
	Slide 28: Fin

