
JWT WTF?
A Look Into Common JWT Vulnerabilities

05/09/2025



Thank You to Our Sponsors and Hosts!

Without them, this conference couldn’t happen.



3

• Lead Security Consultant at Bastion Security

• Pentester for over 6 years

• Previously done internal security consultancy for a bank.

whoami



4

• What is a JWT?

• Common attacks against JWTs

• Live Demo Pre-Recorded Demo

• Security best practices

• Q&A

Agenda



5

• A way of representing information between parties

• Commonly used for Authentication and Authorisation

• Digitally signed - trusted and verifiable

• Consists of a header, payload and signature

What is a JWT?



6

• Header - Algorithm

• Payload - User Claims

• Signature

• The entire token - Replay attacks 

What Can We Attack?



7

• Vulnerability: Server does not validate the signature at all.

• Attack: Change the JWT claim as you see fit!

No Verification



8

Demo



9

• Vulnerability: When the HMAC algorithm is used with a weak secret key. 

• Attack: Using a valid JWT, we can bruteforce it to get the secret. 

• Using this secret, we can sign our own valid tokens.

Weak Secret Key



10

Demo



11

• Vulnerability: Server accepts unsigned tokens

• Attack: Change header to { "alg": "none" } and remove the signature

• Profit?

alg: none



12

Demo



13

• Avoid denylisting - Fix the root cause.

• Auth0 - JWT Validation Bypass in Authentication API

sPoNgEbOb yOuR wAy tO vIcToRy

https://web.archive.org/web/20200416191255/https:/insomniasec.com/cdn-assets/Insomnia_Security_-_JWT_Validation_Bypass_in_Auth0_Authentication_API.pdf


14

• Arises when JWT libraries use a single method for verifying signatures.

• We can force the server to use the HMAC symmetric algorithm instead of RSA

• In a flawed implementation, we can use the server’s public key to sign JWTs.

• Since the server uses the same public key to verify the JWT, we can create valid JWTs.

Key Confusion



15

Demo



16

• Use proven libraries and keep them updated

• Stick with battle-tested libraries 

• Use strong, modern algorithms such as RS256

• Explicitly reject alg: none and all its variants - don’t rely on library defaults

• Always treat user input as untrusted

• Validate all claims on the server-side

• Do security reviews.

• Peer Reviews, Penetration Testing, SCA/SAST Tooling.

So How To Secure?



Questions?


	Slide 1: JWT WTF? A Look Into Common JWT Vulnerabilities
	Slide 2
	Slide 3: whoami
	Slide 4: Agenda
	Slide 5: What is a JWT?
	Slide 6: What Can We Attack?
	Slide 7: No Verification
	Slide 8: Demo
	Slide 9: Weak Secret Key
	Slide 10: Demo
	Slide 11: alg: none
	Slide 12: Demo
	Slide 13: sPoNgEbOb yOuR wAy tO vIcToRy
	Slide 14: Key Confusion
	Slide 15: Demo
	Slide 16: So How To Secure?
	Slide 17: Questions?

